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Abstract 
In mechatronic product development, there is a lack of a common understanding among 
different engineering domains, regarding the design. One step in improving this situation is to 
develop information models capable of representing both hardware and software elements. 
The objective of this paper is to investigate the Chromosome Model’s ability with respect to 
the mechatronic product and also to suggest an information model which implements its 
principles. The approach takes its point of departure on a theoretical level by analyzing 
theories from mechanical and software engineering. Further, software concepts of relevance 
are incorporated into the Chromosome Model. The result, referred to as a metamodel, is then 
transformed to an information model by utilizing STEP AP214. Both the metamodel and the 
information model are validated with an industrial example. The conclusions drawn from the 
work are that the Chromosome Model can be used as a metamodel for mechatronic products 
and that STEP AP214 can be deployed within the scope of the metamodel. The resulting 
information model captures the functional, causal and spatial relationships of a mechatronic 
product. 

Keywords: Mechatronic product, Chromosome Model, STEP, product information 
management 

1. Introduction 
Mechatronic product development is often carried out in isolation with no or poor 
communication between different engineering domains. Consequently, problems arise in the 
later stages of the development process, typically during integration. This necessitates 
redesigns which generates considerable costs. One step in addressing this issue is to develop 
better information models and processes for managing product information. One alternative 
for model improvement is to strive for greater integration with respect to the engineering 
domains in scope. Given an integrated model, activities such as requirement management, 
configuration management and lifecycle support will be facilitated on a shared level. The 
raison d'être for an integration is to increase the efficiency in information management and 
thus receiving fewer erroneous designs discovered in later phases. Ultimately such 
improvements lead to lower costs, shortened lead times and higher product quality. 

This research has two main objectives; firstly, to investigate whether the Chromosome Model 
[1] is able to describe the concepts of a mechatronic product during development. Secondly, 
to suggest an information model competent of implementing the principles of the 
Chromosome Model. 
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Figure 1. The research approach, adapted from Duffy and Andreasen [2] 

The approach is to start from and reason about existing theories from the hardware and 
software domains, using them as metamodels, see Figure 1.  

The hardware domain is represented by the Theory of Technical Systems [3] and the Theory 
of Domains [4], whereas the software domain is represented by the 4+1 View Model of 
architecture [5]. The Chromosome Model [1] which has evolved from the Theory of Domains 
is adopted for representation of the mechatronic product, including software. The resulting 
metamodel is then formalized into an information model by utilizing the STEP Application 
Protocol (AP) 214 [6]. The information model and its use represent an integrated approach 
towards different engineering domains, tracing dependences in the mechatronic product and 
supporting a coordinated management of product information. Finally, an industrial example 
of a mobile phone is used to validate the resulting metamodel and information model. 

The remainder of this paper is outlined as follows: Section 2 overviews related research work. 
Section 3 argues the selection of the Chromosome Model as a metamodel for the entire 
mechatronic product and takes software into account. Section 4 focuses on a description of 
how software can be introduced into the Chromosome Model. The correspondence between 
AP214 and the Chromosome Model is analyzed in Section 5, resulting in an information 
model to continue with. For validation of the somewhat modified Chromosome and to 
illustrate how the selected subset of AP214 can be used, an instantiation of the product 
example is presented in Section 6. The results are discussed and concluded in Section 7 and 
some suggestions for future work proposed in Section 8. 

2. Related work 
Work that has been performed and presented within the area of engineering design research 
that includes mechatronic products and product development often has a technical focus. 
Examples are results of simulation methods and models [7, 8] or solution-modelling of the 
product itself [9]. 

An interesting approach is that of Collier [10], who proposes a common product model for 
hardware and software focusing on information management for the development of product 
and subsystem variants. His work has a very broad scope but lack in detailing. Persson-
Dahlqvist et al. [11] explore the area of PDM and SCM integration, putting emphasis on 
similarities and differences between computer tools. Even though they raise many interesting 
questions regarding domain integration, they do not go into information modelling details. 

Implementations of the Chromosome Model are rare. Malmqvist and Schachinger [12] have 
pointed out how the model could be implemented in terms of managing requirements coupled 
with the other artefacts of the model. The ISO standard STEP AP214 [6] offers a rather 
complete implementation of the Chromosome Model even though it is unspoken. Utilizing 
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STEP in design research is not uncommon. The work of Sivard [13] emanates from 
Axiomatic Design and AP214 with the purpose of improving information management in 
developing product families. The methodology used to perform and present this work has 
several similarities with research presented by Aganovic et al. [14] as it uses STEP and the 
Theory of Domains as its frame of reference, even though it focuses on concurrent 
engineering and manufacturing systems. 

The research presented on the topic of mechatronic products is insufficient regarding product 
information management. In addition, there exist few attempts to couple information models 
for the mechatronic product to modern design theory. This paper aims to address this issue. 

3. Justification of the Chromosome Model 
The aim of this section is to justify the use of the Chromosome Model as a basis for integrated 
information management for mechatronic products. Even though the artefacts described by 
the Chromosome and the 4+1 View Model differ in the sense that software cannot be 
represented in terms of shape and form they have some basic similarities. In this section, the 
two models will be described and mapped to each other. 

3.1 Two models 
The Theory of Domains [4] is based on the Theory of Technical Systems [3] and describes a 
mechanical product by four domains; a process domain, a function domain, an organ domain 
and a part domain. Processes transform operands (material, energy, signals) due to effects. A 
function is the ability to create an effect. Effects are produced by organs. Organs are 
physically realized by parts. These four domains build a metamodel referred to as the 
Chromosome Model [1]. The domains are causally linked in the model, see Figure 2. 

Shaw and Garlan [15] define software architecture as something that “involves the description 
of elements from which systems are built, interactions among those elements, patterns that 
guide their composition, and constraints on these patterns”. In software development, these 
descriptions are often elaborated and communicated through various standards and 
specifications. The Unified Modeling Language (UML) is the most widely used standard for 
modelling and building software. UML adapts Kruchten’s suggestions [5] of a 4+1 View 
Model of software architecture. All views in the 4+1 View Model include both structural 
models and behavioural models. The Logical view states the functional requirements of the 
system, i.e. what the system should do. It also defines major design packages, subsystems and 
classes. The Implementation view is typically deduced from the Logical view. It encompasses 
the organization of subsystems into hierarchy of architectural layers; software parts and files  

Process

Function

Organ

Part

Logical
view

Implementation
view

Process
view

Deployment
view

Use-Case
view

Needs
Function

Materialized
by

Realized
by

 

Figure 2. The Chromosome Model and The 4+1 View Model of  architecture [5] 
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that are used to assemble and release the software. The Process view addresses concurrency 
and synchronization aspects of the system at run time; tasks, threads, processes and their 
interactions. Issues of parallelism, fault tolerance, object distribution, deadlock and response 
time are dealt with here. The Deployment view, sometimes referred to as the Physical view, 
shows how the various executables and other runtime software parts are mapped to the 
underlying platforms or computing nodes. It also deals with the non-functional requirements 
set on the software. Finally the Use-Case view has a particular role in the architecture, as it 
illustrates the four other view models by typical user scenarios. In the early development 
phases it helps to explore and encompass the architecture. At a later stage, it is used for 
validation of the system. 

3.2 Conceptual similarities between the models 
The use of the Chromosome Model as an opening reference for integration requires some 
understanding for the similarities between the domains in scope. Here, a conceptual mapping 
from the 4+1 View Model to the Chromosome is proposed. 

The Process view: This view deals with aspects of interaction and has time as a variable. It 
clearly belongs to the process domain. 

The Logical view: Since the view treats the definition of what is to be accomplished, it is 
apparent that it fits into the function domain. The view also maps to he organ domain, since it 
is used for the definition of fundamental elements, carrying function, within the software 
structure. 

The Implementation view: In terms of its management of software artefacts, it is evident that 
the mapping is preferably done towards the part domain. Noticeable is that not all aspects of 
this view can be mapped unambiguously. For instance the view also deals with internal 
requirements to ease the programming. 

The Deployment view: This view assigns software parts to hardware. The view thereby map to 
the part domain. However, the non-functional requirements do not belong in this domain. 

The Use-Case view: The view communicates the actual use of the software. We can see upon 
it as an abstraction of the Process view. With the same certainty as with the Process view, we 
state that it belongs to the process domain. 

To sum up, there are noticeable conceptual similarities between the two models. Even though 
the mapping is not completely unambiguous in every aspect, it could be used as a foundation 
for a further exploration of the Chromosome Model’s capabilities regarding software. 

4. Using the Chromosome Model for mechatronic products 
In this section we propose some additions to the Chromosome Model, extending its 
capabilities for managing software information. The discussion will have its point of 
departure in the Theory of Technical Systems. 

4.1 Software from a Theory of Technical Systems perspective 
From a Theory of Technical System’s point of view an operand is transformed in a 
transformation process by effects from a technical system. In the process, the operand changes 
state from existing to desired. If for example the process is to boil water, the technical system 
may be a stove, the operand the water to be boiled and the effect produced by the technical 
system may be the heat from the stove. 
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Figure 3. Hardware and software together effects the transformation process 

Software can in the terminology of Theory of Technical Systems be described in two different 
ways. On a high level of abstraction, only the controlling effects of the software are apparent 
and software can then be described as a part of the technical system creating effects on the 
transformation process. A further decomposition of the transformation process entails that the 
software system must actually define the process, giving the process its desired 
characteristics. Software is then a set of rules or instructions, which prescribe the actions to be 
taken and which output to produce when given certain input. 

The most reasonable approach is to regard software as a part of the technical system. After all, 
software and hardware together carry the functions of a product. This can be illustrated by 
giving an example of an Antilock Braking System (ABS), schematically shown in the left part 
of Figure 3. We can notice how the actuator and the software in the control unit together carry 
the function “apply brakes without locking”. In the right part of the figure we see how the 
technical system is divided into software and hardware subsystems and how they together 
effects the transformation process. Of course, software can only have effect on an information 
level. 

4.2 Impact on the Chromosome Model 
Due to the fact that software and hardware together create effects on the transformation 
process, we propose the addition of software as well as mechatronic organs to the 
Chromosome, see Figure 4. If a functional dependence exists between a hardware organ and a 
software organ, it is defined by their causal relations to the function that they realize. In the 
part domain we subsequently propose the addition of software parts. Mechatronic parts may 
also be necessary in order to manage artefacts that comprise both hardware and software. 
Dependence between a hardware part and a software part imply that the software is housed in 
the hardware, or more correctly loaded onto the hardware. This type of dependence can be 
classified as spatial and is created by including hardware and software parts in the same 
assembly. 
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Figure 4. Mechatronic organ materialized by parts 
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Figure 5. The utilized subset of AP214 [6] 

5. STEP-based implementation 
The aim of this section is to show how the most essential subset of AP214 implements the 
principles of the Chromosome Model (including proposals of section 4). STEP is an 
abbreviation for STandard for the Exchange of Product model data, which is a family of ISO 
standards [16]. The STEP Application Protocol 214 scopes Core data for automotive 
mechanical design processes [6]. Due to its generality and Chromosome outlook on design 
AP214 is a good candidate as an information model for mechatronic products. 

In AP214, three out of four Chromosome domains have direct correspondence; the function, 
organ and part domains. The only process domain concepts that are found in the AP regard 
the manufacturing system and its meeting with the design. The subset of AP214 that has been 
utilized is illustrated in Figure 5 and described in the subsequent section. 

Starting from top left, a complex_product can be realized by, decomposed into or specialized 
as product_constituent in a functional, logical, or physical way. A 
product_structure_relationship relates a complex_product to a product_constituent. 
Consequently, a product_constituent is an object that may participate in the functional, 
logical, or physical break-down of the product. These three entities represent a very important 
mechanism for building product structures. A product_function is defined as “a behaviour or 
an action expected from a product”. A product_component is defined as an element in a 
conceptual product structure, which is a somewhat vague definition. The possible 
relationships between product_function and product_component reveal more of the nature of 
the two entities. A product_function may be considered as the functionality to be fulfilled by a 
product_component, or a product_component may be considered as a means to realize a 
product_function. Both product_function and product_component are specializations of the 
complex_product and product_constituent entities. An item_instance is an occurrence of an 
item (part) in a product structure (whose semantics are defined elsewhere in the AP). The 
entity is also a specialization of the product_constituent entity. The valid contexts for 
product_function and product_component are defined by the entity application_context and 
its attributes application_domain and life_cycle_stage. Application_domain identifies the 
context of the entity that it is relevant for. The standard suggests amongst others ‘electrical 
design’ and ‘mechanical design’, where applicable. We here propose a small extension 
including ‘mechatronic design’ and ‘software design’ as possible options. The 
life_cycle_stage attribute specifies the stage for which the definition is valid; ‘design’, 
‘manufacturing’ or ‘recycling’. The specialization of the item_instance highlighted in this 
work is the single_instance entity. 
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In summary, the discussed subset of the AP is the most vital part for representing core 
Chromosome concepts. Three domains are satisfactorily covered by the AP. Product_function 
is the key entity in the function domain, product_component in the organ domain and 
item_instance in the part domain. 

6. Validation 
This section validates the work presented in this paper with product information of a mobile 
phone, namely the T28 of Ericsson. Firstly, it will be illustrated how the Chromosome model 
can be used as a basis for addressing the mechatronic product information management issue 
and secondly, parts of AP214 will be instantiated with product information of the phone. 

Ericsson has chosen to describe the T28 by a software architecture and a hardware part 
structure. These two structures are separate from each other but there is a generally expressed 
desire for integration. During development the software is divided into modules which are 
implemented by a set of source code files and managed in a SCM system. The final outcome 
of the software development process is a so-called load module, a software-executable built 
out of several modules and specially packaged for loading onto the phones memory. The 
hardware part structure is managed in a PDM system. 

The use of the Chromosome is illustrated in Figure 6 by the two T28 high level functions Set 
Frequency and Send Signal. Noticeable is that the soft and hard organs together realize their 
corresponding functions. To realize these functions, three hardware organs and one software 
organ are deployed. A network communication organ, controlling the transmitter/receiver, a 
logic organ executing software operations, a transmitter/receiver organ transforming an 
electrical signal to a radio signal and vice versa and an antenna organ for signal reception and 
transmission. The hardware organs are realized in the parts structure by a CPU, a 
transmitter/receiver assembly and an antenna. 

The software organ is realized by the load module. The example shows that software modules 
are possible to treat as software organs and included in a common model together with the 
hardware of a mechatronic product. A functional dependence between the 
transmitter/receiver, logic and the network communication organs originates in that they 
together realize the Set Frequency function. A spatial dependence between software and 
hardware exists due to the fact that the load module is included in the parts structure. 

The above discussed functions, organs and parts can be instantiated in the AP214-model. In 
the centre of Figure 7, the entire instantiation (for details see [17]) of the information 
presented in Figure 6, and to the left/right a zoom of the two highlighted regions.  
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Figure 6. Schematic representation of the mobile phone in Chromosome notation 
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Figure 7. An instantiation of the information model describing the mobile phone example. 

The exemplifying functions set frequency (#1) and send signal are represented by instances of 
the entity product_function. The functions are realized by instances of product_component, 
i.e. the organs, as in the cases of network communication (#8), logic (#9) and 
transmitter/receiver (#11). This illustrates how AP214 captures the functional organ-organ 
relations. The realization of the organs into parts is done through instances of the 
product_structure_relationship entity (#13), which point out the specific instances of the 
single_instance (#19) that realize the organs. A single_instance is as mentioned in Section 5 
only an occurrence of an item, the item is the actual part that is version controlled by an 
item_version (#40). Notice that the single_instance (#19) of load module (#47) realizes the 
network communication organ (#8). 

The instance diagram illustrates that AP214 without any extension is capable of handling the 
main elements of the mechatronic product: The product can be represented on the functional, 
organ, and part level. Assemblies comprising mechanical as well as electrical and software 
parts can be built indicating their relations from a functional or manufacturing viewpoint 
through the assembly_definition construct (excluded in Figure 7). Where applicable, a PDM-
system implementing AP214’s information model could act as the only information holder at 
the system level. But it is also possible to let other information systems such as SCM systems 
take control at appropriate points. This will most probably be the case for the source code files 
and the building of the load module. 

7. Conclusions 
This paper has approached the area of product information management for mechatronic 
products with two objectives as stated in Section 1. In this section the work will be discussed 
and concluded in accordance with these objectives. 

Objective 1: Investigate whether the Chromosome Model is able to describe the concepts of a 
mechatronic product during development. 
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The Chromosome Model was originally designed to clarify the concepts of mechanical 
engineering artefacts (machine systems). However, the number of pure mechanical products 
being developed today is decreasing, due to an increased use of software and electronics. 
Thus a further elaboration of the Chromosome Model is desired. This paper has showed that 
software can be viewed as a part of the technical system and that it together with hardware 
produces effects on the transformation process, at least on an information level. With this in 
mind it becomes clear that the concepts of mechatronic products can be explained in the 
terminology of the Chromosome. We have seen that function carriers can be of various types 
and that it is of no significance for the final product if they are implemented in hardware or 
software, it is just a matter of means for reaching the goal of the design. For example both a 
slide-rule and an electronic calculator implement the functionality of addition. 

This paper has focused on conceptual integration, delimiting from details of what information 
that should be managed in what supporting system. Despite this fact, it can be concluded that 
the Chromosome, with modest modifications, is possible to deploy in the efforts to 
consistently describe the concepts of a modern mechatronic product. 

Objective 2: Suggest an information model competent of implementing the principles of the 
Chromosome Model. 

In this paper it has been shown that the STEP AP214 is a suitable information model for 
representing mechatronic product information. There are several benefits of a standardized 
approach towards information management, implementing already agreed solutions and 
conventions. The use of standardized formats eases access and increases the ability to 
exchange information, which is certainly not the case of a non-standard alternative.  Even 
though the STEP Application protocol 214 was developed for and by the automotive industry 
and without formulated intents of implementing the Chromosome Model, we have found 
significant similarities as shown in section 5 and 6. 

8. Future Work 
This paper has focused on integration on a shared level. Further research is needed to clarify 
the details of how information management in software and hardware engineering can be 
linked. Topics such as requirement management, versioning and lifecycle issues still have to 
be addressed for the mechatronic product. Finally, there are more than two engineering 
domains (electronics, mechanics, software, hydraulics et cetera), which means that there is a 
need for addressing the general problem of multi-domain products. 
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