
1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN

ICED 03 STOCKHOLM, AUGUST 19-21, 2003

MODELLING INFORMATION FOR MECHATRONIC PRODUCTS

Karl Hallin, Trond Zimmerman, Daniel Svensson, Johan Malmqvist

Abstract
In mechatronic product development, there is a lack of a common understanding among
different engineering domains, regarding the design. One step in improving this situation is to
develop information models capable of representing both hardware and software elements.
The objective of this paper is to investigate the Chromosome Model’s ability with respect to
the mechatronic product and also to suggest an information model which implements its
principles. The approach takes its point of departure on a theoretical level by analyzing
theories from mechanical and software engineering. Further, software concepts of relevance
are incorporated into the Chromosome Model. The result, referred to as a metamodel, is then
transformed to an information model by utilizing STEP AP214. Both the metamodel and the
information model are validated with an industrial example. The conclusions drawn from the
work are that the Chromosome Model can be used as a metamodel for mechatronic products
and that STEP AP214 can be deployed within the scope of the metamodel. The resulting
information model captures the functional, causal and spatial relationships of a mechatronic
product.

Keywords: Mechatronic product, Chromosome Model, STEP, product information
management

1. Introduction
Mechatronic product development is often carried out in isolation with no or poor
communication between different engineering domains. Consequently, problems arise in the
later stages of the development process, typically during integration. This necessitates
redesigns which generates considerable costs. One step in addressing this issue is to develop
better information models and processes for managing product information. One alternative
for model improvement is to strive for greater integration with respect to the engineering
domains in scope. Given an integrated model, activities such as requirement management,
configuration management and lifecycle support will be facilitated on a shared level. The
raison d'être for an integration is to increase the efficiency in information management and
thus receiving fewer erroneous designs discovered in later phases. Ultimately such
improvements lead to lower costs, shortened lead times and higher product quality.

This research has two main objectives; firstly, to investigate whether the Chromosome Model
[1] is able to describe the concepts of a mechatronic product during development. Secondly,
to suggest an information model competent of implementing the principles of the
Chromosome Model.

2

Reality
Metamodel

(Phenomena
model)

Instance model
(Computer

models/tools)
Information model

Mechatronic products - Theory of Technical Systems
- Theory of Domains
- Chromosome Model
- 4+1 View Model of architecture

Subset of STEP AP214 Instantiated information
model of a product
example

Validation and verification

Figure 1. The research approach, adapted from Duffy and Andreasen [2]

The approach is to start from and reason about existing theories from the hardware and
software domains, using them as metamodels, see Figure 1.

The hardware domain is represented by the Theory of Technical Systems [3] and the Theory
of Domains [4], whereas the software domain is represented by the 4+1 View Model of
architecture [5]. The Chromosome Model [1] which has evolved from the Theory of Domains
is adopted for representation of the mechatronic product, including software. The resulting
metamodel is then formalized into an information model by utilizing the STEP Application
Protocol (AP) 214 [6]. The information model and its use represent an integrated approach
towards different engineering domains, tracing dependences in the mechatronic product and
supporting a coordinated management of product information. Finally, an industrial example
of a mobile phone is used to validate the resulting metamodel and information model.

The remainder of this paper is outlined as follows: Section 2 overviews related research work.
Section 3 argues the selection of the Chromosome Model as a metamodel for the entire
mechatronic product and takes software into account. Section 4 focuses on a description of
how software can be introduced into the Chromosome Model. The correspondence between
AP214 and the Chromosome Model is analyzed in Section 5, resulting in an information
model to continue with. For validation of the somewhat modified Chromosome and to
illustrate how the selected subset of AP214 can be used, an instantiation of the product
example is presented in Section 6. The results are discussed and concluded in Section 7 and
some suggestions for future work proposed in Section 8.

2. Related work
Work that has been performed and presented within the area of engineering design research
that includes mechatronic products and product development often has a technical focus.
Examples are results of simulation methods and models [7, 8] or solution-modelling of the
product itself [9].

An interesting approach is that of Collier [10], who proposes a common product model for
hardware and software focusing on information management for the development of product
and subsystem variants. His work has a very broad scope but lack in detailing. Persson-
Dahlqvist et al. [11] explore the area of PDM and SCM integration, putting emphasis on
similarities and differences between computer tools. Even though they raise many interesting
questions regarding domain integration, they do not go into information modelling details.

Implementations of the Chromosome Model are rare. Malmqvist and Schachinger [12] have
pointed out how the model could be implemented in terms of managing requirements coupled
with the other artefacts of the model. The ISO standard STEP AP214 [6] offers a rather
complete implementation of the Chromosome Model even though it is unspoken. Utilizing

3

STEP in design research is not uncommon. The work of Sivard [13] emanates from
Axiomatic Design and AP214 with the purpose of improving information management in
developing product families. The methodology used to perform and present this work has
several similarities with research presented by Aganovic et al. [14] as it uses STEP and the
Theory of Domains as its frame of reference, even though it focuses on concurrent
engineering and manufacturing systems.

The research presented on the topic of mechatronic products is insufficient regarding product
information management. In addition, there exist few attempts to couple information models
for the mechatronic product to modern design theory. This paper aims to address this issue.

3. Justification of the Chromosome Model
The aim of this section is to justify the use of the Chromosome Model as a basis for integrated
information management for mechatronic products. Even though the artefacts described by
the Chromosome and the 4+1 View Model differ in the sense that software cannot be
represented in terms of shape and form they have some basic similarities. In this section, the
two models will be described and mapped to each other.

3.1 Two models
The Theory of Domains [4] is based on the Theory of Technical Systems [3] and describes a
mechanical product by four domains; a process domain, a function domain, an organ domain
and a part domain. Processes transform operands (material, energy, signals) due to effects. A
function is the ability to create an effect. Effects are produced by organs. Organs are
physically realized by parts. These four domains build a metamodel referred to as the
Chromosome Model [1]. The domains are causally linked in the model, see Figure 2.

Shaw and Garlan [15] define software architecture as something that “involves the description
of elements from which systems are built, interactions among those elements, patterns that
guide their composition, and constraints on these patterns”. In software development, these
descriptions are often elaborated and communicated through various standards and
specifications. The Unified Modeling Language (UML) is the most widely used standard for
modelling and building software. UML adapts Kruchten’s suggestions [5] of a 4+1 View
Model of software architecture. All views in the 4+1 View Model include both structural
models and behavioural models. The Logical view states the functional requirements of the
system, i.e. what the system should do. It also defines major design packages, subsystems and
classes. The Implementation view is typically deduced from the Logical view. It encompasses
the organization of subsystems into hierarchy of architectural layers; software parts and files

Process

Function

Organ

Part

Logical
view

Implementation
view

Process
view

Deployment
view

Use-Case
view

Needs
Function

Materialized
by

Realized
by

Figure 2. The Chromosome Model and The 4+1 View Model of architecture [5]

4

that are used to assemble and release the software. The Process view addresses concurrency
and synchronization aspects of the system at run time; tasks, threads, processes and their
interactions. Issues of parallelism, fault tolerance, object distribution, deadlock and response
time are dealt with here. The Deployment view, sometimes referred to as the Physical view,
shows how the various executables and other runtime software parts are mapped to the
underlying platforms or computing nodes. It also deals with the non-functional requirements
set on the software. Finally the Use-Case view has a particular role in the architecture, as it
illustrates the four other view models by typical user scenarios. In the early development
phases it helps to explore and encompass the architecture. At a later stage, it is used for
validation of the system.

3.2 Conceptual similarities between the models
The use of the Chromosome Model as an opening reference for integration requires some
understanding for the similarities between the domains in scope. Here, a conceptual mapping
from the 4+1 View Model to the Chromosome is proposed.

The Process view: This view deals with aspects of interaction and has time as a variable. It
clearly belongs to the process domain.

The Logical view: Since the view treats the definition of what is to be accomplished, it is
apparent that it fits into the function domain. The view also maps to he organ domain, since it
is used for the definition of fundamental elements, carrying function, within the software
structure.

The Implementation view: In terms of its management of software artefacts, it is evident that
the mapping is preferably done towards the part domain. Noticeable is that not all aspects of
this view can be mapped unambiguously. For instance the view also deals with internal
requirements to ease the programming.

The Deployment view: This view assigns software parts to hardware. The view thereby map to
the part domain. However, the non-functional requirements do not belong in this domain.

The Use-Case view: The view communicates the actual use of the software. We can see upon
it as an abstraction of the Process view. With the same certainty as with the Process view, we
state that it belongs to the process domain.

To sum up, there are noticeable conceptual similarities between the two models. Even though
the mapping is not completely unambiguous in every aspect, it could be used as a foundation
for a further exploration of the Chromosome Model’s capabilities regarding software.

4. Using the Chromosome Model for mechatronic products
In this section we propose some additions to the Chromosome Model, extending its
capabilities for managing software information. The discussion will have its point of
departure in the Theory of Technical Systems.

4.1 Software from a Theory of Technical Systems perspective
From a Theory of Technical System’s point of view an operand is transformed in a
transformation process by effects from a technical system. In the process, the operand changes
state from existing to desired. If for example the process is to boil water, the technical system
may be a stove, the operand the water to be boiled and the effect produced by the technical
system may be the heat from the stove.

5

TS

HW SW Hu

Transformation process

Control unit

Wheel velocity sensor

Tire angular velocity

Control
signal

Brake force actuator

Wheel

Figure 3. Hardware and software together effects the transformation process

Software can in the terminology of Theory of Technical Systems be described in two different
ways. On a high level of abstraction, only the controlling effects of the software are apparent
and software can then be described as a part of the technical system creating effects on the
transformation process. A further decomposition of the transformation process entails that the
software system must actually define the process, giving the process its desired
characteristics. Software is then a set of rules or instructions, which prescribe the actions to be
taken and which output to produce when given certain input.

The most reasonable approach is to regard software as a part of the technical system. After all,
software and hardware together carry the functions of a product. This can be illustrated by
giving an example of an Antilock Braking System (ABS), schematically shown in the left part
of Figure 3. We can notice how the actuator and the software in the control unit together carry
the function “apply brakes without locking”. In the right part of the figure we see how the
technical system is divided into software and hardware subsystems and how they together
effects the transformation process. Of course, software can only have effect on an information
level.

4.2 Impact on the Chromosome Model
Due to the fact that software and hardware together create effects on the transformation
process, we propose the addition of software as well as mechatronic organs to the
Chromosome, see Figure 4. If a functional dependence exists between a hardware organ and a
software organ, it is defined by their causal relations to the function that they realize. In the
part domain we subsequently propose the addition of software parts. Mechatronic parts may
also be necessary in order to manage artefacts that comprise both hardware and software.
Dependence between a hardware part and a software part imply that the software is housed in
the hardware, or more correctly loaded onto the hardware. This type of dependence can be
classified as spatial and is created by including hardware and software parts in the same
assembly.

SW
Organ

Mechatronic
Organ

HW
Organ

HW Part

SW Part

Assembly

Figure 4. Mechatronic organ materialized by parts

6

application_context

(ABS)
item_instance

(ABS)
product_constituent

product_componentproduct_function

(ABS)
complex_product

product_structure_relati
onship

relating related

11

single_instance

is_relevant_for

application_domain

life_cycle_stage

relation_type

is_relevant_for

name

name

Figure 5. The utilized subset of AP214 [6]

5. STEP-based implementation
The aim of this section is to show how the most essential subset of AP214 implements the
principles of the Chromosome Model (including proposals of section 4). STEP is an
abbreviation for STandard for the Exchange of Product model data, which is a family of ISO
standards [16]. The STEP Application Protocol 214 scopes Core data for automotive
mechanical design processes [6]. Due to its generality and Chromosome outlook on design
AP214 is a good candidate as an information model for mechatronic products.

In AP214, three out of four Chromosome domains have direct correspondence; the function,
organ and part domains. The only process domain concepts that are found in the AP regard
the manufacturing system and its meeting with the design. The subset of AP214 that has been
utilized is illustrated in Figure 5 and described in the subsequent section.

Starting from top left, a complex_product can be realized by, decomposed into or specialized
as product_constituent in a functional, logical, or physical way. A
product_structure_relationship relates a complex_product to a product_constituent.
Consequently, a product_constituent is an object that may participate in the functional,
logical, or physical break-down of the product. These three entities represent a very important
mechanism for building product structures. A product_function is defined as “a behaviour or
an action expected from a product”. A product_component is defined as an element in a
conceptual product structure, which is a somewhat vague definition. The possible
relationships between product_function and product_component reveal more of the nature of
the two entities. A product_function may be considered as the functionality to be fulfilled by a
product_component, or a product_component may be considered as a means to realize a
product_function. Both product_function and product_component are specializations of the
complex_product and product_constituent entities. An item_instance is an occurrence of an
item (part) in a product structure (whose semantics are defined elsewhere in the AP). The
entity is also a specialization of the product_constituent entity. The valid contexts for
product_function and product_component are defined by the entity application_context and
its attributes application_domain and life_cycle_stage. Application_domain identifies the
context of the entity that it is relevant for. The standard suggests amongst others ‘electrical
design’ and ‘mechanical design’, where applicable. We here propose a small extension
including ‘mechatronic design’ and ‘software design’ as possible options. The
life_cycle_stage attribute specifies the stage for which the definition is valid; ‘design’,
‘manufacturing’ or ‘recycling’. The specialization of the item_instance highlighted in this
work is the single_instance entity.

7

In summary, the discussed subset of the AP is the most vital part for representing core
Chromosome concepts. Three domains are satisfactorily covered by the AP. Product_function
is the key entity in the function domain, product_component in the organ domain and
item_instance in the part domain.

6. Validation
This section validates the work presented in this paper with product information of a mobile
phone, namely the T28 of Ericsson. Firstly, it will be illustrated how the Chromosome model
can be used as a basis for addressing the mechatronic product information management issue
and secondly, parts of AP214 will be instantiated with product information of the phone.

Ericsson has chosen to describe the T28 by a software architecture and a hardware part
structure. These two structures are separate from each other but there is a generally expressed
desire for integration. During development the software is divided into modules which are
implemented by a set of source code files and managed in a SCM system. The final outcome
of the software development process is a so-called load module, a software-executable built
out of several modules and specially packaged for loading onto the phones memory. The
hardware part structure is managed in a PDM system.

The use of the Chromosome is illustrated in Figure 6 by the two T28 high level functions Set
Frequency and Send Signal. Noticeable is that the soft and hard organs together realize their
corresponding functions. To realize these functions, three hardware organs and one software
organ are deployed. A network communication organ, controlling the transmitter/receiver, a
logic organ executing software operations, a transmitter/receiver organ transforming an
electrical signal to a radio signal and vice versa and an antenna organ for signal reception and
transmission. The hardware organs are realized in the parts structure by a CPU, a
transmitter/receiver assembly and an antenna.

The software organ is realized by the load module. The example shows that software modules
are possible to treat as software organs and included in a common model together with the
hardware of a mechatronic product. A functional dependence between the
transmitter/receiver, logic and the network communication organs originates in that they
together realize the Set Frequency function. A spatial dependence between software and
hardware exists due to the fact that the load module is included in the parts structure.

The above discussed functions, organs and parts can be instantiated in the AP214-model. In
the centre of Figure 7, the entire instantiation (for details see [17]) of the information
presented in Figure 6, and to the left/right a zoom of the two highlighted regions.

SW Network
Communicattion HW HW HW

Set
Frequency

Send
Signal

Transmitter/
Receiver

AntennaPBA

CPU

Mobile
Phone

Assembly

Mobile
Phone

Load Module

Logic Transmitter/
Receiver Antenna

Functions

Organs

Parts

Figure 6. Schematic representation of the mobile phone in Chromosome notation

8

g

#8
product_component

’network
communication’

m

s#19
single_instance

#13
product_structure_rel

ationship
’realization’

related

relating

ff
#26

design_discipline_ite
m_definition

definition

aaa

jjj

#40
item_version

#47
item

’load module’

associated_item

associated_item_version

a

c d f

g h i

#1
product_function
’set frequency’

#5
product_structure_rel

ationship
’realization’

#4
product_structure_rel

ationship
’realization’

#11
product_component
’transmitter/receiver’

#3
product_structure_rel

ationship
’realization’

#9
product_component

’logic’

#8
product_component

’network
communication’

related

related

related

relating relating
relating

Figure 7. An instantiation of the information model describing the mobile phone example.

The exemplifying functions set frequency (#1) and send signal are represented by instances of
the entity product_function. The functions are realized by instances of product_component,
i.e. the organs, as in the cases of network communication (#8), logic (#9) and
transmitter/receiver (#11). This illustrates how AP214 captures the functional organ-organ
relations. The realization of the organs into parts is done through instances of the
product_structure_relationship entity (#13), which point out the specific instances of the
single_instance (#19) that realize the organs. A single_instance is as mentioned in Section 5
only an occurrence of an item, the item is the actual part that is version controlled by an
item_version (#40). Notice that the single_instance (#19) of load module (#47) realizes the
network communication organ (#8).

The instance diagram illustrates that AP214 without any extension is capable of handling the
main elements of the mechatronic product: The product can be represented on the functional,
organ, and part level. Assemblies comprising mechanical as well as electrical and software
parts can be built indicating their relations from a functional or manufacturing viewpoint
through the assembly_definition construct (excluded in Figure 7). Where applicable, a PDM-
system implementing AP214’s information model could act as the only information holder at
the system level. But it is also possible to let other information systems such as SCM systems
take control at appropriate points. This will most probably be the case for the source code files
and the building of the load module.

7. Conclusions
This paper has approached the area of product information management for mechatronic
products with two objectives as stated in Section 1. In this section the work will be discussed
and concluded in accordance with these objectives.

Objective 1: Investigate whether the Chromosome Model is able to describe the concepts of a
mechatronic product during development.

9

The Chromosome Model was originally designed to clarify the concepts of mechanical
engineering artefacts (machine systems). However, the number of pure mechanical products
being developed today is decreasing, due to an increased use of software and electronics.
Thus a further elaboration of the Chromosome Model is desired. This paper has showed that
software can be viewed as a part of the technical system and that it together with hardware
produces effects on the transformation process, at least on an information level. With this in
mind it becomes clear that the concepts of mechatronic products can be explained in the
terminology of the Chromosome. We have seen that function carriers can be of various types
and that it is of no significance for the final product if they are implemented in hardware or
software, it is just a matter of means for reaching the goal of the design. For example both a
slide-rule and an electronic calculator implement the functionality of addition.

This paper has focused on conceptual integration, delimiting from details of what information
that should be managed in what supporting system. Despite this fact, it can be concluded that
the Chromosome, with modest modifications, is possible to deploy in the efforts to
consistently describe the concepts of a modern mechatronic product.

Objective 2: Suggest an information model competent of implementing the principles of the
Chromosome Model.

In this paper it has been shown that the STEP AP214 is a suitable information model for
representing mechatronic product information. There are several benefits of a standardized
approach towards information management, implementing already agreed solutions and
conventions. The use of standardized formats eases access and increases the ability to
exchange information, which is certainly not the case of a non-standard alternative. Even
though the STEP Application protocol 214 was developed for and by the automotive industry
and without formulated intents of implementing the Chromosome Model, we have found
significant similarities as shown in section 5 and 6.

8. Future Work
This paper has focused on integration on a shared level. Further research is needed to clarify
the details of how information management in software and hardware engineering can be
linked. Topics such as requirement management, versioning and lifecycle issues still have to
be addressed for the mechatronic product. Finally, there are more than two engineering
domains (electronics, mechanics, software, hydraulics et cetera), which means that there is a
need for addressing the general problem of multi-domain products.

9. Acknowledgements
This work was financed by Vinnova (Swedish Agency for Innovation Systems) and Ericsson,
whose support is gratefully acknowledged. We wish to thank Sony Ericsson Mobile
Communications AB in Lund for providing the validation example used.

References
[1] Andreasen, M.M., "Designing on a "Designers Workbench" (DWB)", Proceedings of 9th

WDK Workshop, Rigi, 1992.
[2] Duffy, A.H. and Andreasen, M.M., "Enhancing the evolution of design science",

Proceedings of International conference on engineering design - ICED 93, 1995, pp. 29-
35.

10

[3] Hubka, V. and Eder, W.E., "Theory of technical systems : A total concept theory for
engineering design", Springer-Verlag, 1988.

[4] Andreasen, M.M., "The theory of domains", Proceedings of EDC-workshop:
Understanding Function and Function to Form Evolution, Cambridge, United Kingdom,
1991, pp. 21-47.

[5] Kruchten, P., "The 4+1 View Model of Architecture", IEEE Software, Vol. 6, 1995, pp.
42-50.

[6] ISO, "ISO 10303-214:2001(E) - Industrial automation systems and integration - Product
data representation and exchange - Part 214: Application protocol: Core data for
automotive mechanical design processes", 2001.

[7] Krastel, M. and Anderl, R., "Managing mechatronic simulation models of technical
products with PDM-systems", Proceedings of International conference on Engineering
Design - ICED01, Glasgow, 2001.

[8] Zhang, W.J. and Li, Q., "Design for control: A proposed methodology for developing
mechatronic systems", Proceedings of International conference on Engineering Design -
ICED 2001, Munich, 1999.

[9] Gausemeier, J., Flath, M. and Möhringer, S., "Modelling and evaluation of principle
solutions of mechatronic systems, exemplified by tyre pressure control in automotive
systems", Proceedings of International conference on Engineering Design - ICED 2001,
Glasgow, 2001.

[10] Collier, W., "A Common Specification for Systems-Based Product Modeling", D.H
Brown Associatives, Inc., 1999.

[11] Persson-Dahlqvist, A., Asklund, U., Crnkovic, I., Hedin, A., Larsson, M., Ranby, J. and
Svensson, D., "Product Data Management and Software Configuration Management -
Similarities and Differences", The Association of Swedish Engineering Industries,
2001.

[12] Malmqvist, J. and Schachinger, P., "Towards an implementation of the chromosome
model - focusing the design specification", Proceedings of International conference on
engineering design - ICED 97, Tampere, 1997, pp. 203-212.

[13] Sivard, G., "A Generic Information Platform for Product Families", Doctoral thesis,
Royal Institute of Technology, Division of Computer Systems for Design and
Manufacturing, Department of Production Engineering, Stockholm, 2000.

[14] Aganovic, D., Nielsen, J., Fagerström, J., Clausson, L. and Falkman, P., "A concurrent
engineering information model based on the STEP standard and the theory of domains",
Proceedings of International design conference - DESIGN 2002, Dubrovnik, 2002.

[15] Shaw, M. and Garlan, D., "Software Architecture", Prentice-Hall, Inc., 1996.
[16] ISO, "ISO 10303-1:19994 - Industrial automation systems and integration - Product

data representation and exchange - Part 1: Overview and fundamental principles", 1994.
[17] Svensson, D., Hallin, K., Zimmerman, T. and Malmqvist, J., ”An information model for

mechatronic products focusing on early development phases”, Proceedings of the 6th
Workshop on Product Structuring, Copenhagen, 2003.

For more information please contact:

Karl Hallin Chalmers University of Technology, PPD SE - 412 96 Göteborg Sweden
Tel: Int +46 31 7728285 Fax: Int 46 31 7721375 E-mail: karl.hallin@me.chalmers.se
URL: http://www.ppd.chalmers.se/~hallin/

