

A STRATEGY FOR QUALITY ASSURANCE OF COMPUTER BASED
DESIGN METHODS

E. Z. Opiyo, I. Horváth, J. S. M. Vergeest

Delft University of Technology
Department of Design Engineering

e-mail: {e.opiyo;i.horvath;j.s.m.vergeest}@io.tudelft.nl

Keywords: CAD/CAM/CAE, quality assurance, pre-implementation testing, abstract prototyping.

Abstract: In software development processes, reviews are typically conducted to remove faults be-
fore requirements or designs are passed to the subsequent phase. However, in spite of the strin-
gent review procedures, the process is still porous and significant numbers of faults conceals. This
paper presents a novel strategy for reducing faults by assuring quality of the in-process implemen-
tations, dubbed abstract prototyping. It extends the current practices by defining the steps of the
design phase of the processes of development of engineering design software tools. Under this
procedure, reviews are performed to remove faults before theories, methods, algorithms, or pilot
prototypes are passed to the subsequent stage rather than exclusively reviewing the requirements
or designs. Prototypes provide the feel and the look of these in-process implementations and spe-
cially designed metrics help the developers estimate the extent to which they fulfill their respective
requirements. Case studies show that the levels of fulfillment of requirements can adequately be
estimated and faults detected early on.

1. INRODUCTION

Quality is defined as the degree of excellence of
something [1]. This implies that any software project
can be found lacking if measured against an unclear
notion of what quality is [2]. Various testing strategies
can be used to determine whether software satisfy its
specification, and it is recognized, for example, in [3]
that each technique provides varying amount of
assurance. It is universally understood that quality of
software products, including those used in
engineering design [variously known as Computer
Aided Design (CAD), Computer Aided Design and
Manufacturing (CAD/CAM) and Computer Aided
Engineering (CAE) systems] is determined during the
entire development interval [4]. Two strategies,
namely (i) assurance of the process by which software
is developed and (ii) verification and validation of
various in-process implementations, are used to assure
quality of software product. The former strategy
include, for instance, using traditional software

development models such as waterfall and rapid
prototyping, abiding by standards, and following
software process management techniques such as
Rational Unified Process (RUP) and Capability
Maturity Model (CMM). The later include conducting
traditional tests such as unit tests, system tests,
integration tests, and usability tests; carrying out
reviews (that is, surveys, analytical studies,
experimenting with prototypes, and so forth); and
adhering to software quality standards such as ISO
and IEEE standards. Most strategies are of post
coding nature, while a handful of them are not.
Despite of the presence of many strategies for
assuring quality, still there are pitfalls and faults
occasionally pass through the development processes
and end up as bugs in the delivered software. In
general, there is no consensus among the broad
software engineering community concerning the exact
nature of the development models, tests or even
combinations that are appropriate for all tasks and
software projects. Practitioners and researchers

EDIProD’ 2002 134

concede that there is no silver bullet development
model or verification and validation technique that
will work for all software organizations and for all
software projects [2], [5], [6], [7], and [8]. It is also
generally understood that bugs cannot completely be
eliminated [9]. In a typical software process, the
design phase accounts for a significant net additional
faults [10-11], and it is tempting to suggest that there
is a need for a more robust strategy for assuring
quality in the design interval.
In most cases the traditional software process models
are used to direct and guide software development
activities. They are typically multi phased, and consist
of requirements, design, implementation, testing and
operation as the main phases [12-13]. One of the
goals of phased development is to minimize faults in
the delivered codes. Many of the faults can be traced
back to the requirements or designs. Reviews are
typically performed to remove faults before the re-
quirements or designs are passed to the subsequent
phase. However, the review processes are porous and
still faults passes into the subsequent phases. Part of
the problem is that the activities in the phases of soft-
ware process models are coarsely defined and do not
scale to precisely match the needs of the actual proc-
esses. The design phases are typically broad, and in
the course of creating final designs, different kinds of
intermediate products that can be prototyped and
reviewed, and consequently contribute towards reduc-
ing faults come into the picture. One of the possible
measures to improve quality of software is therefore
through prototyping and review of all design phase in-
process implementations.

The CAD/CAM/CAE systems are different from
other software in that they are based on engineering
principles and methods. The design phase of these
software tools consists of ad hoc activities such as
development or specification of foundational theories,
underlying methods, development of algorithms, and
pilot implementation. Having known the needs and the
constraints on the solutions, the developers of these
software tools define features of the envisaged software
and formulate or select appropriate theories for each
feature. Based on the defined theories, the underlying
methods are developed and reviewed. The algorithms
are subsequently developed and codes for the key fea-
tures of software written and tested. The initial activi-
ties of formulation of theories and methods are rather
highly informal and happen intuitively. As an attempt
to formalize this procedure and enable more reviews
and tests to be done in the design interval, we have
developed a pre-implementation testing methodology
called abstract prototyping (abbreviated as AP in this
article). It emulates and extends the current ad hoc
practices, and defines the stages of the design phase of
the processes of development of CAD/CAM/CAE
software as creation or selection of theories, formula-
tion of methods, design of algorithms, and writing
codes for pilot prototypes. Based on this methodology,
faults can be traced back to the requirements, theories,

methods, algorithms, or pilot prototypes rather than
exclusively to the requirements or the design phase end
product (namely the design document in its final form).
Under this procedure, prototypes are built and reviews
conducted to remove faults before the requirements,
theories, methods, algorithms, or pilot prototypes are
passed to the subsequent level. Specially designed
metrics provides means to estimate the extent to which
these design phase in-process implementations fulfill
the requirements.

In this paper, we present and discuss practical case
studies on the application of the AP strategy. This is
preceded by a concise overview of the background
research.

2. BACKGROUND RESERACH

This section briefly describes of the theoretical fun-
damentals of AP, the methodology and software tools
that have been developed to support software devel-
opers in reviewing the in-process implementations.

2.1. Abstract Prototyping

In the development of CAD/CAM/CAE software, it
is important to ensure that right engineering princi-
ples (theories), methods, algorithms are deployed. It
is also important to detect and eliminate flaws as
early as possible, preferably prior to coding. This is
because if a solution concept is changed after cod-
ing, then large sections of the code may have to be
rewritten. The AP concept has been developed to
ensure that appropriate theories, methods and algo-
rithms are used. It is also meant to facilitate discov-
ery of faults at the design phase, and it provides a
way for proofing the in-process implementations at
the design phase, before codes are written.

2.1.1. Fundamentals

AP can be defined as the process of prototyping and
reviewing the in-process implementations at the design
interval. Theories, methods, algorithms and pilot proto-
types are regarded as testable implementations during
the conceptualization and design of CAD/CAM/CAE
software. AP is a staged process, and at each stage, the
key objective is to minimize the number of flaws
passed to the next phase. For the initial stages - namely
theories, methods, and algorithms - at these moments
the codes have not yet been written, and to ensure that
the in-process implementations are of sufficient quality,
reviews are conducted. At the pilot prototypes stage,
codes are available, and apart from reviews, there are
many other well-known testing techniques that can be
used to find bugs. In the framework of the AP tech-
nique, reviews are done systematically, by involving
representatives of various stakeholders, broadly catego-
rized as the developers and the users as subjects. Theo-
ries and algorithms are highly technical in-process
implementations and the developers are well suited to

EDIProD’ 2002 135

serve as subjects during their reviews. On the other
hand, the representatives of the users review methods
and pilot prototypes, which are rather less technical and
easily perceivable. Prototypes of the in-process imple-
mentations (called abstract prototypes) are built and
provide the basis for discussing and clarifying the im-
plementations. A review set-up typically consists of a
panel of the representatives of the stakeholders' com-
munity, who give opinions on the implementations.
The opinions are subsequently analyzed, and based on
this, flaws in the in-process implementations can be
identified. Then the developers rework the implementa-
tion and review it for the second time (if necessary)
before the implementation is passed to the next stage
(unless the re-identified faults are so severe and another
rework and review is needed). The idea is to ensure that
all faults are caught and eliminated as early as possible.
Fig. 1 illustrates various kinds of possible transfor-
mations between acquisition of requirements and
realization of the expected software product in the
AP context and how various stakeholders are in-
volved in the reviews. The main path is the Theo-
ries-Methods-Algorithms-Pilot prototypes-Expected
functionality (TMAPE) path. Having known the
suitable theories, they can be transformed into meth-
ods, followed by algorithms, and finally into codes
for pilot prototypes or the expected functionality.
The TMAPE path guides the design process through
the basic preliminary guises and the building blocks
of the eventual software of different natures. Obvi-
ously there are other transformation scenarios, for
instance, starting straight away to write codes for the
expected functionality based on theories (TE), meth-
ods (TME), or algorithms (TMAE) and vice versa.
There are also short cuts such as, writing codes for
the expected functionality exclusively based on
methods (ME), algorithms (AE), theories, algo-
rithms and pilot prototypes (TAPE), theories and
pilot prototypes (TPE), or methods and pilot proto-
types (MPE).

In the development of novel functionality, it can,
however, be detrimental, say, to jump directly into
the development of methods, algorithms or pilot
prototypes based on the understanding of require-
ments (or needs) only, without building a foundation
on a theory or set of theories. Such practices can
increase the rework cycles. The processes tend to be
rather ad hoc, undisciplined, and of trial and error in
nature, and thus the outcomes are prone to faults. On
the other hand, the designs resulting from the
TMAPE track are less vulnerable to errors since
when gaps in the in-process implementations are
identified, the information is fed back into the re-
spective level specification model, and the faults
adjusted early on. In this way, faults can consistently
be detected and rework cycles reduced or even
avoided. In general terms, the practice of not basing
the implementations on foundational theories can
result into an increased number of flaws. Thus, in
order to implement high quality functionality from
scratch, the TMAPE path must be followed.
In some practical cases, the existing methods, algo-
rithms or codes that can approximately solve prob-
lems are sometimes available, and can be adapted
and used. For instance, if there is an implementation
that roughly matches the expected functionality, a
backward-forward path i.e. PAMT-TMAPE can be
followed to scale the existing codes to the problem.
Similarly, if there is an algorithm that closely
matches the specifications of the problem, a back-
ward path, for this case AMT, can be traced, fol-
lowed by a forward transformation of TMAPE, and
so on. The challenge that the developers may face
when reusing the readily available in-process im-
plementations is how to interface them in an effec-
tive way and how to synchronize the needed modifi-
cation to the existing implementations. One of the
dangers of following the reuse paths is that even
mediocre concepts can be institutionalized.
In conclusion, the principles of AP can be
summarized as follows:
• The software design process passes through vari-

ous stages, implicating diverse in-process abstract
appearances of software in different contexts.

• Theories, methods, algorithms and pilot prototypes
are testable in-process implementations at the
design phase of the software development process.
We refer to the corresponding creation stages as
levels of abstraction.

• Requirements are clustered according to the
levels of abstraction, and

• The representatives of the stakeholders are sys-
tematically involved in the assessment of qual-
ity of the in-process implementations as they
evolve. The evaluation criteria are derived from
the requirements. The requirements are signifi-
cantly improved through the elaboration proc-
esses that involve evaluation of the representa-
tions of the in-process implementations, also
called abstract prototypes.

Pilot prototypes
Subjects: Users

Algorithms
Subjects: Developers

Methods
Subjects: Users

Theories
Subjects: Developers

R
eq

uir
em

en
ts

Ex
pe

ct
ed

 F
un

ct
io

na
lity

Short cuts
Main path

Work Products

Needs

TE

TME

TMAE

TMAPE

Software
features
definition

ET

EMT

EAMT

EPAMT

TAPE

MPETPE

Fig.1. A general scheme for realization of soft-
ware in the framework of the AP technique

EDIProD’ 2002 136

2.1.2. The Process

AP is essentially the symbiosis of a methodology
and software tools usage in the representation and
review of preliminary implementations of
CAD/CAM/CAE software. It furnishes the develop-
ers with a methodology for exploration and reason-
ing about the alternative solutions during conceptu-
alization of functionality and systematically brings
into the review floor various stakeholders of the
envisaged software, namely various user groups,
developers and other experts. It thus helps develop-
ers think far beyond their own experience and exper-
tise and reach across stakeholders and other experts,
to find solution to problems. It can also be regarded
as a way of thinking that enables the developers to
project and reflect the contents of their solution.
Fig. 2 shows the main activities in AP. AP comprises
a Meta scheme that shapes the AP process among the
levels of abstraction. It also consists of specific
schemes for (i) shaping and directing activities within
the individual levels, (ii) clustering requirements
according to the levels of abstraction, (iii) finding
weak spots in the in-process implementations and
ranking of alternative solutions, and (iv) guiding the
participation of the stakeholders in AP. These
schemes are presented in detail in [14].

2.2. Software Support

The AP software has been developed based on the
principles of AP covered in [14]. The AP software
portfolio includes utilities for representation and proc-
essing of requirements, representation and processing
of abstract prototypes, preparation of opinions gather-
ing tool, and information analysis. Computers bring
into AP the power to communicate, store and process
information. The essence of AP being aided by com-
puters is the marriage created by applying its underly-
ing schemes and the strengths of computers to provide
assistance to the developers or enhance their capabili-
ties. The intention is to make the AP procedure highly
knowledge intensive by including the requirements as
well as knowledge about the problems and solutions
in the AP software. This makes AP more effective in
supporting software development process.

Table 1. Paths followed in the development of the
studied software tools

Software tool Paths
followed

Result

Speech input utility EPAMT/
TMAPE

Requirements
fulfilled sufficiently

Vague geometry modeler TMAPE Faster and efficient

Mechanical behavior
simulator

TAPE Flexible as required

Photogrammetry TMAPE Many requirements
taken into
consideration

3D points manipulation UI TME Worked as desired

At the initial stages of the AP process, the role of the
AP software is to support off-line preparation activi-
ties. These include (i) supporting acquisition of re-
quirements, (ii) providing expert guidance, for in-
stance, during the selection of the forms of representa-
tion of abstract prototypes or the subjects, and (iii)
availing the AP knowledge and guidelines. In the late
stages of the AP process, the AP software supports
processing of field information. This yields results,
which can be used in the identification of flaws and
selection of the best alternative(s). The AP system
also allows for requirements, abstract prototypes, and
the analysis results to be stored for use during the
development interval as well as in future projects.
Also, the AP system serves as an online mentor that
makes process practical by providing extensive guide-
lines, templates, and examples. It is important to em-
phasize that goal of the AP software has not been to
achieve full automation of the AP process, but rather
to provide software tools for assisting the developers
in AP. Human interaction and supervision is always
of enormous importance in AP. Detailed description
of the AP software including its algorithms and utili-
ties are available in [15].

3. CASE STUDIES

This section summarizes the results of case studies
on application of the AP concept. The case project
was on development of software tools for supporting
engineering design, namely shape conceptualization

and reengineering of shape. Table 1
shows the case software tools, of
which the design processes were
studied, paths followed during their
design, as well as the opinions given
on the software products that
resulted from following the
indicated paths. As can be seen,
different paths were followed, and
this largely depended upon what
kinds of solutions were known at the
beginning of the design process.
Nevertheless, ultimately in all cases
the developers felt that the end

Acquire requirements

Create opinions
gathering tool

Opinions
gathering Analysis

Assign
features

Build an
abstract
prototypeTranslate requirements

into the evaluation criteria

Select subjects, and
develop metrics and

measurements

Approved
work

product

Fig. 2. The AP process

EDIProD’ 2002 137

products were developed as specified in the
requirements model.
The quasi-automated procedure depicted in Fig. 2
was followed when reviewing theories, methods,
algorithms or pilot prototypes. Many design phase
in-process implementations have been reviewed, but
due to space limitations we only explain, using ex-
amples, how the reviews were conducted. Detailed
descriptions of the AP reviews can be found else-
where, for example in [16]. When an in-process
implementation had to be reviewed, its requirements
were formulated; starting point being the pool of
previously acquired requirements (at the preceding
phase of requirements specification) stored in the AP
system's database. The requirements were then made
specific to the current stage of the design process
and eventually transformed into evaluation criteria
(that is, paraphrased into a language understandable
to the targeted subjects). Fig. 3 shows typical exam-
ples of the evaluation criteria used in various levels
of abstraction.
In each AP exercise, an information-gathering tool
comprising of the evaluation criteria [Fig. 3] was
prepared and sent out to the subjects representing the
targeted stakeholders for completion. The opinions
were subsequently analyzed and the levels of
fulfillment of the evaluation criteria (that is by
default the levels of fulfillment of the requirements1)
as well as the acceptability of the in-process
implementation in question determined.

The information gathering and analysis process can
be described as follows. Subjects are required to
specify the level of fulfillment of each requirement
(φ), relevance of every requirement (ρ), and their
confidence (χ) [Fig. 4] on the information gathering
form. The specified values depict how the subjects
feel requirements have been fulfilled, are relevant,

1 Each evaluation criterion consists of a tag called identi-

fier, which is used for cross-referencing the evaluation
criterion to the requirement it relates to. Based on this,
the evaluation criteria can be correlated to the require-
ments.

and how accurate they responded respectively. For
m review criteria used in an AP exercise in which n
subjects participated, the total merit value µT for a
solution proposal can be determined as follows:

∑∑
= =

=
m

i

n

j
ijijijiT

1 1

χρφϖµ

where φij, ρij, and χij are the level of fulfillment, the
relevance, and the confidence about requirement i as

expressed by subject j. and ωi is the weight assigned
by the requirements engineer (the developer), which
signifies the importance of the requirement i. The
acceptability index (α) is then defined as follows:

s

T

ε
µα =

where,)(maxmaxmax χρφε nms = is the maximum

possible total merit value. φmax, ρmax, and χmax are
the maximum achievable values of φ, ρ and χ
respectively. α gives the developers clue on the
extent to which the proposed solution compares to
the ideal solution. Based on the values of α, the
solution proposals can be ranked in pecking order of
salience. Tµ values for requirements can also be

presented graphically i.e. used in plotting the σ −
graph, while the collated φ values can be used in the
generation of the φ − diagram [see Fig. 5]. These
graphs provide pictorial overview of the extents of
fulfillment of requirements. The ρ and χ values are
also used in the determination of the relevance (Ρ)
and confidence (Χ) indexes respectively as follows.

max

1

ρ

ρ

n

n

i
i∑

==Ρ

max

1

χ

χ

n

n

i
i∑

==Χ

The Ρ index indicates how relevant, in the opinions
of the subjects, the review criterion and

Identifier The evaluation criterion Relevance#
- ρ (0…3)

Score*
- φ (0…3)

Confidence!
- χ (0…3)

R1 Each action in the
sequence has a succes-
sor

R2 Steps of an algorithm
precisely are defined

R3 The algorithm termi-
nates after a finite
(required) number of
steps.

R4 The outcomes of each
stage are known

R5 The sequence of actions
has a unique initial
action.

0 - Not Relevant; 1 - Fairy Relevant; 2 - Relevant; 3 - Very Relevant
* 0 - Not Fulfilled; 1 - Fairy Fulfilled; 2 - Fulfilled; 3 - Very Much Fulfilled
! 0 Not Confident at All; 1 - Fairy Confident; 2 - Confident; 3 - Very Confident

Fig. 3. A typical information-gathering tool

Relevance, ρ

Level of fulfillment, φ

Confidence, χ

Acceptability index, α
Relevance index, Ρ
Confidence index, Χ
φ- and σ- graphs
etc.

Subjects’ input variables

Fig. 4. The evaluation scheme

EDIProD’ 2002 138

consequently the requirement is, in regard to the
ongoing AP exercise, while the Χ index indicates
how confident the subjects have assigned φ and ρ
values, and how knowledgeable they are. Refer to
[15] for further elaboration on the information
gathering and analysis process.
Fig. 5 shows a typical plot of the levels of
fulfillment of requirements. Further descriptions on
how to prepare these graphs are well as on how to
determine the acceptability, relevance and
confidence indexes for in-process implementations
are documented elsewhere, for example in [15-17].
These plots show relative levels of fulfillment of
requirements by the in-process implementation, that
is, to what extent the in-process implementation in
question satisfy requirements. Based on these
diagrams, the requirements that have not been
fulfilled can clearly be distinguished, and the in-
process implementation improved while keeping an
eye on the least fulfilled requirements.

The lessons learned from case studies can be
summarized as follows.
• In all application cases, the Theory-Methods-

Algorithms-Pilot prototypes (TMAP) paradigm
was intuitively followed, but not necessarily in a
strict singular order. The tracks pursued largely
depended on in what form the solution was
initially available.

• Comprehensive understanding of foundational
engineering principles was always necessary
when designing CAD/CAM/CAE software.
This was always the case, even for problems
that had high-fidelity initial solutions.
Algorithms or codes for the building blocks of
CAD/CAM/CAE software were adapted and
used only after thorough investigation, and even
after modifying underlying theories or methods.

• Involvement of clients in the reviews at the
'methods' abstraction level, especially in highly
technical and scientific CAD/CAM/CAE
software projects, was seen by some developers
as rather unfeasible. This was because
introducing highly technical and scientific
concepts to clients required a lot of efforts, and
it was difficult to make them understand such
concepts as the developers wished. For such

projects, involvement of the clients in AP had to
be delayed until after implementation of the
pilot prototypes.

• Requirements for in-process implementations
were highly transferable from task to task, and
project to project. In most cases, the peer level
general-purpose requirements were used
unchanged in various AP experiments. The
research-oriented case studies were conducted
first, and the overwhelming numbers of the
general-purpose requirements for the in-process
implementations were used unchanged in the
industrial case study.

• The application cases have attested that the AP
methodology can effectively help
CAD/CAM/CAE software developers at the
design phase to (i) work in an orderly and
guided manner, (ii) quickly acquire
requirements for the in-process
implementations, and (iii) systematically review

the in-process implementations, by involving
various CAD/CAM/CAE software stakeholders
as the evaluation subjects. It has been observed
that the AP procedure provides a framework for
determination of adequacy of the in-process
implementations at the design phase and helps
in the identification of weak spots.

• There have been skepticisms on the reliability
of AP metrics and measurements. In measuring
the acceptability of the in-process
implementations or the extent to which they
fulfill requirements, some users questioned the
objectivity of the collected data, and pointed to
composition of the review panels and
completeness of review criteria as the reasons
behind their skepticism2.

• Some of the developers who used the AP
methodology and software tools could not
immediately understand what a theory or a
method means, or differentiates theories from

2 In general terms, skepticism on metrics and measure-

ments is common in many software development pro-
jects or organizations. Nevertheless, it is understood that
without metrics it is impossible to know how well vari-
ous products have been implemented.

0

20

40

60

80

100

120

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

R
11

R
12

R
13

R
14

R
15

R
16

R
17

R
18

R
19

R
20

R
21

R
22

R
23

R
24

R
25

R
26

R
27

R
28

R
29

Requirements

%
 o

f
F

u
lf

ill
m

en
t

BBA with Spatial Resection and Intersection
BBA with Direct Linear Transformation
BBA with analog field measurements
Relevance

Fig. 5: A typical plot of the levels of fulfillment of requirements

EDIProD’ 2002 139

methods straight away. Often it was necessary
to provide definitions. Perhaps this is due to the
fact that theories and methods are not
commonly recognized as intermediate in-
process implementations in the existing
software development models. Products of the
later CAD/CAM/CAE software design stages
(namely, algorithms and pilot prototypes) were,
however, easily distinguishable.

• The AP concept appeared to work slightly more
convincingly in the industrial CAD/CAM/CAE
software project than in the research oriented
CAD/CAM/CAE software project. This can be
attributed to the nature of the projects. In the
industrial CAD/CAM/CAE software project, the
needs and the requirements were much clearer
and testable, while in the research oriented
CAD/CAM/CAE software project, the needs
and the requirements were somewhat vague and
sometimes some of them were rather difficult to
test. Nevertheless, it can be said that the
philosophy of AP was evenly appreciated in
research oriented as well as business oriented
CAD/CAM/CAE software project.

A questionnaire survey was carried out to investigate
the acceptability of the AP concept. The developers
and various subjects involved in the AP reviews
were asked to indicate how effective AP helped or
support various aspects. A rating scale of 0 to 3 for
not effective, fairly effective, effective, and very
effective respectively was adopted. Statistics shows
emphatically that the respondents believed that it is a
useful strategy. All respondents indicated that it is
effective (80%) or very effective (20%) in shaping
and directing activities at the design phase of the
software development processes while over 80% felt
that it is effective or very effective as a pre-
implementation testing strategy. Over 50% of the
respondents indicated that it effectively or very
effectively helps identification of weak spots in the
design phase in-process implementations.

4. CONCLUDING REMARKS AND
FUTURE WORK

A new strategy to reduce the number of faults in the
design phase of the software development process
has been developed. The AP strategy has in the first
place been designed as a general procedure for pre-
implementation testing of any CAD/CAM/CAE
software. The idea is to introduce review cycles
early on and interweave them in the design process.
This can ultimately help reduce flaws. The
application case studies presented in the previous
section illustrate two ways of using the AP strategy,
namely, (i) as a model for directing the development
and review activities at the design phase; and (ii) as
a technique for keeping requirements and constraints
aboard when designing CAD/CAM/CAE software.
There can, however, be other application avenues.

For instance, it can be used as a technique for
systemization of the involvement of various
stakeholders and as a framework for progressively
introducing methods and software into the industry.
Bringing into the review floors the representatives of
the future users to serve as members of the review
panels manifests the later application orientation.
The application case studies have shown that AP
effectively supports the developers in exploring the
suitability of the design phase in-process
implementations. It has been demonstrated that it (i)
offers a platform for shaping and directing software
design activities and for systemization of the
involvement of various stakeholders in checking
progressively if requirements are being satisfied
when designing software; (ii) provides means for
identification of weak spots in the in-process
implementations and measuring how well they have
been developed, thus offering means for early
recognition of the needs for enhancement; (iii)
enables investigation and consideration of the aims,
possibilities, and various aspects in a systematic way
early on, (thus, bad decisions that could otherwise
jeopardize software project can therefore not be
institutionalized), and (vii) provides a systematic
way for selecting and enhancing solutions. It can be
said that AP reduces the imperfections that often
lead to rework of poorly engineered software as well
as the susceptibility of the software design processes
to errors. As a result of application of this technique,
only proofed and reliable theories, methods and
algorithms can be institutionalized. The application
of this strategy can ultimately warrant creation of
usable and low risk software.
What is perhaps most different is the structured
levels-wise prototyping and reviews of the design
phase in-process implementations and systematic
involvement of various stakeholders in this. Giving
them chance to express their opinions about the
implementations helps reduce the risk of developing
substandard CAD/CAM/CAE software. For the AP
methodology to be more successful, it needs to be
integrated with suitable metrics, an appropriate
software process model, and complemented with
traditional verification and validation techniques. It
is; however, fair to mention that the AP
methodology has not yet been tested in many
practical situations. Further modest enhancements
may certainly be required, and more tests need to be
conducted before it is put in use in real world
situations.
In spite of the contributions of this work, still there
are open research issues to address in order to
achieve the goal of having a more effective
methodology for pre-implementation testing of
CAD/CAM/CAE software tools, or extending the
usability of the achieved results. To enhance the AP
concept and to widen its application domain, further
research needs to be carried out in various
directions, for instance, to:

EDIProD’ 2002 140

• Explore how the AP concept can best be used
alongside the major traditional software process
management strategies.

• Investigate how the AP concept can effectively
be used in conjunction with conventional
software V&V strategies.

• Study and establish the consequences of usage
of the AP technique on time to market and
development costs.

• Further enhance the AP concept and investigate
the possibility of extending its application
domain to include other similar software
products.

• Extend the scope of the AP technique beyond
software products to include, for instance, pre-
implementation testing of artifactual products.

Acknowledgements : The research work reported in this
paper relates to the Integrated Concept Advancement
(ICA) project of the Faculty of Industrial Design Engi-
neering, Delft University of Technology.

References

[1] Glass, R.: Building Quality Software. Upper
Saddle River, Prentices Hall, 1992.

[2] Melhart, B.: Software Engineering. In Ency-
clopedia of Computer Science, Fourth Edition,
Nature Publishing Group, London UK. 2000,
pp. 1606-1611.

[3] London, R. L. and Craigen, D.: Program
Verification. In Encyclopedia of Computer
Science, Fourth Edition, Nature Publishing
Group, London UK, 2000, pp. 1458-1461.

[4] Petschenik, N. H.: Building Awareness of
System Testing Issues. In Proceedings of the
8th International Conference on Software En-
gineering, 1985, pp. 182-188.

[5] Brooks, F.: Mythical Man Month: Essays on
Software Engineering. Reading, MA: Addi-
son-Wesley, 1995.

[6] Brooks, F. P.: No Silver Bullet: Essence and
Accidents of Software Engineering. Com-
puter, No. 20. Vol. 4, 1987, pp. 10-19.

[7] Howard, A.: Software Engineering Project
Management. Com. of ACM, Vol. 44 No. 5,
2001, pp. 23-24.

[8] Armour, P. G.: Software as a Currency. Com.
of ACM, Vol.44, No. 3. 2001, pp. 13-14.

[9] Lieberman, H. and Fry, C.: Will Software Ever
Work. Com. of ACM, Vol.44, No. 3. 2001. pp.
122-124.

[10] Eick, S. G., Loader, C. R., Long, M. D.,
Votta, L., G. and Wiel, S., V.: Estimating
Software Fault Content Before Coding. ACM
1992, pp. 59-65.

[11] Humphery, W. S.: Managing the Software
Process. Reading, Massachusetts: Addison-
Wesley, pp. 353, 1989.

[12] Lewis, E., W.: Software Testing and Continu-
ous Quality Improvement. 2nd Edition, CRC
Press, 2000.

[13] Jones, W. G.: Software Engineering. John
Wiley & Sons, 1990.

[14] Opiyo, E. Z., Horváth, and Vergeest, J. S. M.:
Abstract Prototyping of Design Support
Tools: Methodology and Preliminary Results.
Proceedings of the 25th Design Automation
Conference (DAC), Las Vegas, Nevada, USA,
Paper No. DETC/CIE-8551, 1999.

[15] Opiyo, E. Z. "Facilitating the Development of
Design Support Software by Abstract Proto-
typing" Ph.D. Thesis, Delft University of
Technology, In press.

[16] Opiyo, E. Z., Horváth, and Vergeest, J. S. M.:
Software Tools for Abstract Prototyping of
Design Support Tools. 20th Computers and In-
formation in Engineering (CIE) Conference,
September 10-13, Baltimore, MA. USA, Pa-
per No. DETC/CIE-14613, 2000.

[17] Opiyo, E. Z., Horváth, and Vergeest, J. S. M.:
Using the Abstract Prototyping in the Devel-
opment of Design Support Systems. Proceed-
ings of the 21st Computers and Information in
Engineering (CIE) Conference: September 9-
12, Pittsburgh, PA, USA, Paper No.
DETC/CIE-2233; 2001.

