9™ INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’07
16 — 18 OCTOBER 2007, MUNICH, GERMANY

APPLYING DSM TO ENTERPRISE ARCHITECTURES

Frank Waldman and Neeraj Sangal
Lattix Inc.

Keywords: DSM, Enterprise Architecture, Multi-Domain

1 INTRODUCTION

The application of DSM in software development has been focused on visualization and analysis of
code bases associated with complex software applications. By extracting dependencies automatically
from the code base of an application, it has been possible to quickly build an initial DSM based upon
its code organization. The DSM must then be transformed to reflect the intended architecture of the
application, which can be accomplished through both manual manipulation of its hierarchy and the use
of special partitioning algorithms. Much value has been achieved by refactoring the code base to
eliminate dependencies which violate the intended architecture and enforcing rules for allowable
dependencies during subsequent builds of the application.

It is insufficient to consider today’s complex software systems only in terms of code written in a
specific language. They consist of multiple elements in a variety of languages, application
frameworks, web services, databases, and configuration files. It is preferable to treat a complex
software system as a system-of-systems than spans multiple domains. Interdependencies exist
between these many domains of the system and an understanding of the overall architecture as well as
the explicit structure of each domain is required.

Driven by customer requests, we have extended our DSM approach beyond software applications and
have developed the capability to map dependencies across the domains of an enterprise architecture.

2 MULTI-DOMAIN DSM APPROACH

Our approach to managing the architecture of software applications, which was presented at previous
DSM conferences [1—3], also works well in other domains. While each domain has different kinds of
elements and different types of dependencies, the same data model and DSM analysis can be applied.
For example, an application code base consists of packages with classes or directories with files, while
a database system includes schemas, tables, packages, sequences, etc. Database architectures can have
subsystems of schemas which are layered just like applications, with similar rules to prevent unwanted
interdependencies.

Mapping dependencies across domains in software systems has been accomplished through a variety
of techniques. For example, Hibernate enables the mapping of a database object to the application
objects which use it. A system that uses Hibernate has Java code, Hibernate mapping files, and
databases. Parsing just the Java code would provide interdependencies between Java classes, while
parsing the database code provides interdependencies of its elements. By parsing the Hibernate
mapping files, it is possible to extract the dependencies between database elements and Java code.
The resulting DSM is now a multi-domain DSM which includes the application, the Hibernate
mapping layer, and the database. In addition, it is possible to merge elements from the domains to
eliminate the mapping layer and show direct connections in the DSM (see Figure 1).

61

a

o EREEEN D e s I S e IR R B
e Gl e N S S e e e S e e e e i o S = o R G

vu‘m
it

& [@ application2 1
% & application-1 2
% model 3
business-logic 3
Framework 5 z
[data-access 3 w4
'O_ ":_ 37 CUSTOMER 7
B QE |7 COST]
COde 2 G | *E CURRENCY 1
B8 | = INPUT_MESSAGE i 1
& | %3 INVESTMENT RSTRN 1 1
= | % ACTION_UNIT REF 12 1
5] PROJIDER. 13 '
; 4 i
B (CTION_UNIT 15 1 z
16 i
// “ CURPOS 17 z
ENT_GROUP i8 z
D t b ASSIGNED 197 i
dldDaSe [eoa - ; :
SCHED]
| g3 STOCK_SPEC 7 i
23 1 2
24 1 2z
25 1 1|zjz}2 2|2 z
[: 26 1 z| |z]z
i 37 z
28 1 z 2z
: 20 i [z
Interdependencies | :
31 i z
] ERRORCOND 32 i z z
| ¥ SHAREHOLDER 33 1 2
| *z3 COUNTRY 34 i 7
g INVESTMENT 3 i z E|E

Figure 1. Multi-domain DSM of Application with Database

Spring Framework is a very popular application framework that uses metadata to configure enterprise
Java applications. The architecture of the enterprise application is driven by the Spring configuration,
which can now be parsed to extract the structure and dependencies between its elements such as
Spring beans and Java classes (as illustrated in Figure 2).

$root Lokl hblBrRE Rk
|| clientContext. xml 1
i store-serviet.xml 2
Fra mMewo rl(inoting-serviet.xml 3
@ accountvalidator 4 2
- @ orderValidator 5 1
- @ petStore 6 1|z
@ propertyConfigurer Z
e i+ -beans.factory.config 8 !
[=l++ (& OrderValidator o] [
8| - (3 Accountvalidator 10
2 (3 AccountValidator il 1
© | - (3 OrderValidator 12 1
= | - (9 PetStoreAnnotationImpl 13 1
— —2 B (& SendOrderConfirmation... 14
- (3 PetStoreImpl 15
Data base - 8 PetStoreFacade 16 = 2|2 6
- 4% OrderService 17 1 1
NeclarativeServices.xml 18
- e ccessContext-jtaml 19 & - s o fafs |11
|| ORCLSCHEMA 20 z 125

Figure 2. Multi-domain DSM with Application Framework

Finally, it is possible to extend this multi-domain approach to business processes and software
services. This, for the first time, allows users to understand the relationships between business
processes and the software architecture. Users can now query the system to understand which
business processes would be affected by changes to the software architecture or how the architecture
must change to accommodate evolving business processes.

3 CONCLUSION

Multi-domain DSM have can used to create the big picture view of the enterprise software
architecture, extracted from the actual implementation. The hierarchy in the multi-domain DSM
enables the scalability needed to represent the thousands of elements and millions of dependencies in
complex enterprise architectures. With the enterprise architecture DSM, it is possible to reduce risk
by better understanding the impact of change and how change propagates.

62

REFERENCES

[1] Waldman F and Jordan E. Using DSMs to Manage the Architecture of Software Systems. 6"
International DSM Conference, Cambridge UK, September 2004.

[2] Waldman F and Sangal N. Results of DSM Analysis of Industrial Software Systems. 7"
International DSM Conference, Seattle, November 2005.

[3] Sangal N. New Techniques for Leveraging Hierarchy in DSMs. 7™ International DSM
Conference, Seattle, November 2005.

Contact: Frank Waldman
Lattix Inc.

8 Harper Circle
Andover, MA 01810
USA

+1.978.474.5022
+1.978.222.8468
frank.waldman@]lattix.co
http://www.lattix.com

63

ot
LATTIXMN

9TH INTERNATIONAL DSM CONFERENCE

Applying DSM to
Enterprise Architectures

Frank Waldman and Neeraj Sangal

Lattix Inc.
USA

m =@
Product Development) - a - ?
Technische Universitat Miinchen

-
LATTIXMN

Index

Introduction

Enterprise Architecture (Domains, System of Systems)
Evolution of Multi-Domain DSM Approach

Example

Summary

Contact data

T =@
Product Development @ - ?
Technische Universitat Minchen

9th International DSM Conference 2007-2

64

IN COOPERATION WITH BMW GROUP

Ll
LATTIX®E
Software Architecture Views

Development
(Implementation)

(Scenarios >

Process Deployment

Logical

Kruchten, Philippe, “Architectural Blueprints—The “4+1” View Model
of Software Architecture,” IEEE Software 12(6), Nov 1995

Product Development a EQE
Technische Universitat Miinchen

9th International DSM Conference 2007- 3

IN COOPERATION WITH BMW GrouP ..

LATTIXMN

Combining Implementation and Logical Views

Combines two Views
* Implementation View (Solid Arrows)
* Logical View (Dotted Arrows)

Product Development ‘ o @ EQE
Technische Universitat Miinchen

9th International DSM Conference 2007- 4

65

C C =
APITALIZE ON LOMPLEXITY LA T T I X
Combining Logical, Implementation, & Process Views

s
=T
5T
9l
at
bl
oz
I

T - |ElsEElelk lslsB BnmEEEEE SN Static dependencies
+|-daza-braadaznd || = reflect the LOgical

+l-palirg ! -
i 41-daza-acqaetior VIeW
al H-harh | ﬂ\'»
\ : |
i TE55A0505 11|41 2.
Z L /Kf | | I
\ i -ehzrechue D 1 G B A

Fy ki

= amuni]

sasseaaid L1

N
o0

upizap -

1] status
H-duamp

4 +Lein
7\ +-conzrel
“iFl-rancralen
+-daza-broadaznd
.J- polrg

duze [1

-l o dsilicn

1 bazch

7
sunoLn,-5520a0d [

|- process-geIvicas i

it
1] statemacking

‘/' - scheduer 5
’ v\ b [+ lstener 3 14 2 o 2
b ; |=LF-amawars 5 alefa 26 4012411 larlgg 23 |z0
9
/

y . Run-time dependencies reflect
¢ Ordered hierarchy reflects the the Process View

f& Implementation and Logical Views,
‘ including layering and modules

Product Development @ - -

Technische Universitat Miinchen
9th International DSM Conference 2007- 5

2o 1

| za 15| .
S~ i Fh

| RS e

CAPITALIZE ON COMPLEXITY LATTT X.
Enterprise Architecture

VA Enterprise DATA FUNCTION NETWORK PEOPLE TIME MOTIVATION Based on work by
Architecture What How Where Who When Why John A. Zachman
SCOPE Things important Processes Business im portant Events Signifcant Business Goals SCOPE
(CONTEXTUAL) [0 the Busiess Periormed ocations Organzatons fo the Business. and snﬁ (CONTEXTUAL)
] Pl [Entity = Cl: of E 1ot o f Node = M g [Ends/M¢ Pl
janner nty = Class of inefnn = Clsee o e = Major ndsiMeans = janner
= Business Thing Dusiiess riveess c siness Locations| Con nected to Major Business Goak
ENTERPRISE [semantc Model Business Process E siness Logistcs . Business Plan ENTERPRISE
MODEL Model £ en S rv MODEL
(CONCEPTUAL) D‘QD e ICGS & (CONCEPTUAL)
(Owner [Ent = Business Entiy Proc = Business Process [N Je = Business Location [People = Organization Unit |Time =Busiess Event [End = Busiess Objectv e Owner
<= Business Linka [Work = Work Product Cycle = Business Cycle [Means = Business Strategy
SYSTEM MODEL Logical Data |Application [tributed System Human Interface Processing Business Rule SYSTEM MODEL
(LOGICAL) [Model |Architecture |4 hitecture Architecture Structure - Mnds\g (LOGICAL)
t] -
Designer Ent = Data Ently Proc = Application Function ent [End = Stuctural Assertion Designer
_|Rel = Data Relationsh /O = User Views le _|Means = Action Assertion

TECHNOLOGY [Physical Data System
[Model Design

- - JaCycle
Applications ’ TEcANoLOGY

MODEL Design MODEL|
(PHYSICAL) : : % (COdebaseS) (PHYSICAL)|
Builder Ent = SegmentTable Proc = Computer Function [N de= PEOpTE=USar TME=EXESus End = Condition Buildes
Rel = PointerKey _|VO = Data Element/Ses _|L i [Work = Screen Format Cycle [Means = Action
DETAILED . wok ecuriy Timing Rule DETAILED|
[REPRESENTATIONS Definitior |Architecture Architecture Definition Design REPRESENTATIONS
(GUT0F CONTEXD | B - (ouTor conTexn
Sub-Contractor oo =t Adresses People = dently Time = Interrupt End = SubConditon Sub-Contractor]

Link = Protocols

e
Connected to | |«
Databases

Work = Job Cycle =Machine Cycle _|Means = Step
[Organization Schedule Strategy FUNCTIONING|
ENTERPRISE|

FUNCTIONING
ENTERPRISE

Node = People = [Time = End =

Link = Work = Cycle = Means =
DATA FUNCTION NETWORK PEOPLE TIME MOTIVATION
What How Where Who When Why

Zachman Framework

Product Development @ = o

Technische Universitat Minchen
9th International DSM Conference 2007- 6

66

CAPITALIZE ON COMPLEXITY

i
LATTIX

Evolution of Multi-Domain DSM

| Applications
iy

| 4

‘i/\ Databases
| 48

4 1

W o

Services

m Product Development

G ' Hibernate to connect
("‘ Frameworks Spring to configure

C/C++, .NET, Ada

Java was first I
Modules, integrations

Different elements
Similar results

Multi-module merge

LDI to load any source
Services Extraction

m & <e-

Technische Universitat Miinchen

CAPITALIZE ON COMPLEXITY

9th International DSM Conference 2007- 7

|
LATTIX

Example: PetStore (Enterprise Application)

=] frear

[+] ramazing-eervlazoml | |[= petstora-sarvist.m | | +] clertTontest,xml

|+ cocarativeServezs xml +| azskeationConzextzml

(\ [+ cdaAicessCanlesl-ja.mrl
$4
z YV
Z .4
‘ ' $root »—n||u|w|.u|u1|cn
v‘ [+ clientCortext.xml 1] -
") [+] petstore-serviet.xml 3
¥ 7 [+l remoting-serviet, xml
’) / [+]- applicaticnContesxt. xml 4 14 | 3
{
‘ ‘ [+]- declarativeServices. xrrl
?ﬁﬁ [+]- datafccessContext-jta.xmi E §11]-
v
)

» Uses the Spring
Framework to configure
the application

* The application logic is
written in Java which
should conform to the
architecture

The system uses an
Oracle database

* The Hibernate
Framework is used to
map the Java objects to
the data objects which
they use

Technische Universitat Minchen

m Product Development

9th International DSM Conference 2007- 8

67

IN COOPERATION WITH BMW GRoOUP

Example: PetStore (Enterprise Application)

Spring Module

Show thesz Ueoendenoes:

[Cleas Rzkerence
| Trvmms
[1 hets
[+ Daa Mamaer Fatzrance
[Carstructs
L Tem
Brzn Ca
[Coretructor ivg
EBezn
o] M
Aoy Typ=
[+] Rafarance
Ag tef
| “pricg N=an
[#] s
[#]Depards on
I'asznt
| Fiopmiby
Pefereine
[#] 52z
1d 1tofcrence
Fiar
Mep
[#]Bazn
Lis:

Sohmwecr ess AR AInca

Szurce Abom <ind

] Rman

[5#] 3D Lok Bean
[#] ==

Jasz

Tzrga: Mz Kinc
D=an

] ThEY e Fimatnn
[+] iz

tass

M Product Development

]
LATTIXE

Hibernate Module

Show These Dependencies

Database
Sequence
One To One
Many to One
Hibernate
Elzment
Synchranize
Column
Many ko Many Table
Compaosite Id Class
Object Table
1D Generator
Proxy
Joined Subclass
Keys
Version
List Inde:x
Map Key
D
Discriminator
Index
Foreign Key
Key

~

Between these Atom Kinds
Source Atam Kind

Class
Entity
Field
Column
Table

Set

Query
Sequence
SQL Query

Target Atom Kind

Class
Entity
Field
Column
Table

Sek

Query
Sequence
SQL Query

IN COOPERATION WITH BMW GROUP

Example: PetStore (Enterprise Application)

=
=
o
o
-+

. EEEOEE

BAEE-[1
“uldsBio- 1]

- clientContext.xml

- petstore-serviet. xmi

BLids m

~remoting-serviet. xml

FHEE

- applicationContext, xm

il

|- declarativeServices.xmi

[}

- dataficcessContext-ftaxml 10

m Product Development

68

Tum @‘c_@?

Technische Universitat Minchen

9th International DSM Conference 2007- 9

o]
LATTIXE

Each module can be
initially loaded as its
own subsystem

The application
codebase only
loosely maps to the
framework

Tum @‘c_@;

Technische Universitat Miinchen

9th International DSM Conference 2007- 10

<
LATTIXME

Example: PetStore (Enterprise Application)

: P;sz:LI :rl:i;.lLr::rucLi:u |"'|00-I|E-NEFCIE SR ° M e rg i ng com b i nes
4 Daper??nw E::I::n;)tlors D :;:;:!r:::lfu;qiimmm milly seene ricrne o il Terenl e I e m e nts I n bOth
modiles
[#] Cieate Subsysters For Mcdules m Od u Ies
* In this example, the
; o Spring classes are
Module Merge Crder R
@ InoukSodrcas Spring merged Wlth the Java
Jdava
classes
[adz Madug| tove Up | [Mave Dovin

TI.ITI = =
Product Development -
Technische Universitat Minchen

9th International DSM Conference 2007- 11

<
LATTIXME

Example: PetStore (Enterprise Application)

post lelnlwls]ala]v]e]s]5]
A - Comparing the DSM
L g [dom 3 [n[s []w before and after
E"'E]--l:lient('.cr‘\text.xml : = merge7 the
He _ interdependencies
o apleo et] MEE between the modules
e —H arenowunderstood
— * The classes which
froot elw]wlalalo]s]elo]E]

are not in the right
place in the Logical
— structure are quickly
identified

i

|- clientContext.xml

petstore-servlet.xml

- remoting-servlet.xmi

- applicationContext.xrl

- declarativeservices, xml

- dataAccessContext-jta.xml

Heweb

[+]- service
[+] domain
[+ dao

Tum =Q=
Product Development :
Technische Universitat Miinchen

9th International DSM Conference 2007- 12

wlm|~|o| o s w|m| e

28 1 8 |42|5 | . 8

“ulds B0 [T Leb [L [

i
(]
]
]

69

.
LATTIXE

Example: PetStore (Enterprise Application)

b BEEREE
| « Decouple by moving
L Eomn Java classes from
e Tk - one partition to
T ' another
i B e « Use the Spring
O P e P e modularization to
— A move the Java
§ e | 1 classes to the
e - WO appropriate
e . ; subsystem
e T L - - « The architecture is
3 e -] B now expressed
e = HEE across both domains
[+ org.springframencrk.saTeles, ||:=t!tc|'c demain 15 10 |27] 3 |1 0%

@
Product Development
Technische Universitat Minchen

9th International DSM Conference 2007- 13

-
LATTIXE

Example: PetStore (Enterprise Application)

* Hibernate module is
added to the merge
groot Lo oo s fn o H@ sequence to show
the dependencies of

- clientContext.xml 1
[]--petstore-ser\rlet.xml 2 the code on the
\FH-remoting-serviet.xml 3
N BEAN 4 w3 database

-\ #-beans. factory.config i | . .

}. sanWeEJpetstraﬁﬁmefﬂg 5 5 a s d Easy tO |dent|fy the
[~ declaratl'.reSerwces ;ml ? violation Of improper
-datatccessContext-jta.xml g ur| s e
- ORCL.SCHEMA g N access to the

database

* Impact analysis can
now be performed
across all domains

=@=
Product Development
Technische Universitat Miinchen

9th International DSM Conference 2007- 14

70

C C .
APITALIZE ON COMPLEXITY LATTIX

Summary

1. Enterprise Architectures consist of many subsystems in different
domains which are interdependent

2. Dependencies in constituent domains can be extracted from actual

U implementation and loaded into a DSM using modules for each domain
2, 3. Merging the elements that are common to different modules enables a
)i(multi-domain DSM to show the interdependencies between domains
4/' 4. Once the Enterprise Architecture is expressed in one DSM, impact

J analysis can be performed which identifies the extent of change

/’\@' propagation across the constituent domains

/

0
4

%V
|/ {
Product Devel t g - =
M roduct Developmen Technische Universitat Miinchen

(4
9th International DSM Conference 2007- 15

71

