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1 INTRODUCTION

The application of DSM in software development has been focused on visualization and analysis of
code bases associated with complex software applications. By extracting dependencies automatically
from the code base of an application, it has been possible to quickly build an initial DSM based upon
its code organization. The DSM must then be transformed to reflect the intended architecture of the
application, which can be accomplished through both manual manipulation of its hierarchy and the use
of special partitioning algorithms. Much value has been achieved by refactoring the code base to
eliminate dependencies which violate the intended architecture and enforcing rules for allowable
dependencies during subsequent builds of the application.

It is insufficient to consider today’s complex software systems only in terms of code written in a
specific language. They consist of multiple elements in a variety of languages, application
frameworks, web services, databases, and configuration files. It is preferable to treat a complex
software system as a system-of-systems than spans multiple domains. Interdependencies exist
between these many domains of the system and an understanding of the overall architecture as well as
the explicit structure of each domain is required.

Driven by customer requests, we have extended our DSM approach beyond software applications and
have developed the capability to map dependencies across the domains of an enterprise architecture.

2 MULTI-DOMAIN DSM APPROACH

Our approach to managing the architecture of software applications, which was presented at previous
DSM conferences [1—3], also works well in other domains. While each domain has different kinds of
elements and different types of dependencies, the same data model and DSM analysis can be applied.
For example, an application code base consists of packages with classes or directories with files, while
a database system includes schemas, tables, packages, sequences, etc. Database architectures can have
subsystems of schemas which are layered just like applications, with similar rules to prevent unwanted
interdependencies.

Mapping dependencies across domains in software systems has been accomplished through a variety
of techniques. For example, Hibernate enables the mapping of a database object to the application
objects which use it. A system that uses Hibernate has Java code, Hibernate mapping files, and
databases. Parsing just the Java code would provide interdependencies between Java classes, while
parsing the database code provides interdependencies of its elements. By parsing the Hibernate
mapping files, it is possible to extract the dependencies between database elements and Java code.
The resulting DSM is now a multi-domain DSM which includes the application, the Hibernate
mapping layer, and the database. In addition, it is possible to merge elements from the domains to
eliminate the mapping layer and show direct connections in the DSM (see Figure 1).
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Figure 1. Multi-domain DSM of Application with Database

Spring Framework is a very popular application framework that uses metadata to configure enterprise
Java applications. The architecture of the enterprise application is driven by the Spring configuration,
which can now be parsed to extract the structure and dependencies between its elements such as
Spring beans and Java classes (as illustrated in Figure 2).
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Figure 2. Multi-domain DSM with Application Framework

Finally, it is possible to extend this multi-domain approach to business processes and software
services. This, for the first time, allows users to understand the relationships between business
processes and the software architecture. Users can now query the system to understand which
business processes would be affected by changes to the software architecture or how the architecture
must change to accommodate evolving business processes.

3 CONCLUSION

Multi-domain DSM have can used to create the big picture view of the enterprise software
architecture, extracted from the actual implementation. The hierarchy in the multi-domain DSM
enables the scalability needed to represent the thousands of elements and millions of dependencies in
complex enterprise architectures. With the enterprise architecture DSM, it is possible to reduce risk
by better understanding the impact of change and how change propagates.
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Example: PetStore (Enterprise Application)
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Example: PetStore (Enterprise Application)

: P;sz:LI :rl:i;.lLr::rucLi:u |"'|00-I|E-NEFCIE SR ° M e rg i ng com b i nes
4 Daper??nw E::I::n;)tlors D :;:;:!r:::lfu;qiimmm milly seene ricrne o il Terenl e I e m e nts I n bOth
modiles
[#] Cieate Subsysters For Mcdules m Od u Ies
* In this example, the
; o Spring classes are
Module Merge Crder R
@ InoukSodrcas Spring merged Wlth the Java
Jdava
classes
[adz Madug| tove Up | [Mave Dovin

TI.ITI = =
Product Development -
Technische Universitat Minchen

9th International DSM Conference 2007- 11

<
LATTIXME

Example: PetStore (Enterprise Application)
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Example: PetStore (Enterprise Application)
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Example: PetStore (Enterprise Application)
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Summary

1. Enterprise Architectures consist of many subsystems in different
domains which are interdependent

2. Dependencies in constituent domains can be extracted from actual

U implementation and loaded into a DSM using modules for each domain
2, 3. Merging the elements that are common to different modules enables a
)i( multi-domain DSM to show the interdependencies between domains
4/' 4. Once the Enterprise Architecture is expressed in one DSM, impact

J analysis can be performed which identifies the extent of change

/’\@' propagation across the constituent domains
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