9™ INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’07
16 — 18 OCTOBER 2007, MUNICH, GERMANY

DYNAMIC, DSM-BASED ANALYSIS OF SOFTWARE
PRODUCT ARCHITECTURES

Manuel E. Sosa', Tyson R. Browning?, and Jiirgen Mihm'

'INSEAD, Fontainebleau, France
’Neeley School of Business, Texas Christian University, Fort Worth, Texas, USA

Keywords: product architecture, modularity, complexity, organizational structure, software
development

1 INTRODUCTION

We explore how the architecture of a product evolves over several generations. We propose a
theoretical framework and research approach to study the dynamics of complex product architectures.
We illustrate our approach by examining the architecture of software products because they are
complex, exhibit fast change rates (like fruit flies in studies of biological evolution), and offer
(through their source code) an efficient, reliable, and standardized medium to capture their
architecture. The IEEE defines product architecture as “the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution” [1]. In the software domain, architecting involves
organizing or structuring the code into modules and layers with the appropriate set of dependencies
between them [2, 3].
This paper reports results from [4], in which we provide a theoretical framework, a basic set of
metrics, and a research approach for exploring the dynamics of complex software architectures. Then,
based on empirical evidence from a case study of an open source project, we uncover several patterns
and insights regarding the dynamics of software architectures and their relationships to organizational
dynamics. These findings indicate several promising avenues for future research.
To explore the dynamics of complex software architectures, we structure our research approach in
three steps:

1. Capture the evolution of software architecture properties.

2. Capture the evolution of organizational attributes.

3. Compare the dynamics of product architectures and organizational attributes.
This abstract provides only a brief introduction to our approach. Our presentation will include metrics
and results. Additional discussion is also available in [4].

2 REPRESENTING SOFTWARE ARCHITECTURE

To measure the complexity associated with software architectures, we first need to represent how the
components of the product interact, how they are grouped into modules, and how modules are
organized into a hierarchy. To capture the basic features that characterize complex system
architectures, we use two complementary representations: a hierarchy tree and a partitioned product
DSM. A tree representation indicates module membership and layering, whereas a product DSM
captures the interactions between components both within and across modules.

Figure 1 shows the tree representation of one of the versions of the software product we study in this
paper, Ant 1.3. The tree representation shows how the 126 components comprising this version of the
product are organized into eight modules and three layers.

In the software domain, a DSM representation has been used to capture the interactions between “class
functions” that comprise software applications [5-7]. Typically, the rows and columns in a product
DSM are ordered so as to maximize the density of clusters of components along the diagonal, so that
clusters (modules) encapsulate the majority of interfaces. This approach, called clustering [8], is
generally recommended for hardware products because of the highly symmetric nature of many spatial
and structural design dependencies between physical components [9]. However, when analyzing the
architecture of software products, we instead use the clusters defined by the system architects and
partition (triangularize) the DSM, also called sequencing [8], to uncover the dependencies that define
the truly coupled components.

349

Ant version 1.30

root (Top-level)

/\\

s ant mail tar
Layer2 taskdefs types util . 000 080
\ /\ \ Mubm:S Module with 8
E . componen ivig
{ 0000 { 0000 botiom Companer
H H [-lovel)
Q000 0000 (botom-level)
Layerd compliers . 0660 ! regexp 6660
Module with 12 0000
compor Q00
nents
/ (bottom-tevel) M:ODO "
uld with
8 (elelelelelele] felefele] Lo campansnis
o%%% 00000000 0000 o (bottom-level)
C0O0G000 Module with 4
Module with 7 00000000 Moduewitns o0 T
companents 00000000 components (SREONAE
(bottom-tevel) Q0000000 (bottom-level)

00000000
Madule with 63

components
(bottom-level)

Figure 1. Tree diagram of Ant version 1.3 (©2007 ASME)

Those familiar with DSM techniques will notice two innovations here. First, we are applying a
sequencing algorithm to a component-based DSM, a combination which did not exist [8] prior to the
work by Sangal et al. [6]. Second, we reverse the typical order of dependency in the DSM.
Traditionally, a DSM using the convention where the components labeling the columns depend on the
components labeling the rows would show feedback below the diagonal. This is done because, as is
conventional in software, the “higher level” components are said to depend on the “lower level” ones
for functionality, and, unlike other time-based DSM applications to date, all of the components indeed
exist simultaneously.

In a complex software product with several layers, like in Error! Reference source not found., we
partition the DSM layer by layer so that modules within the same layer are arranged so as to minimize
super-diagonal marks. (To sequence within each layer, we use the algorithm originally proposed by
Steward [10].) Error! Reference source not found. shows a DSM representation of Ant 1.3. The
DSM shown is a 126x126 matrix with 476 off-diagonal marks representing the “calls” between the
126 “classes” that comprise Ant 1.30. The DSM is sequenced by layer so that feedback marks above
the diagonal are minimized both within and across modules. This DSM has 12 marks above the
diagonal, six of them in layer 2 within module (“ant”—“*”) and six of them across modules (four
within layer 2 and two within layer 3. Note that the branches of the tree in Error! Reference source
not found. are arranged to correspond to the sequenced DSM. The branches on the left of the tree
depend on the branches on the right. Figure 3 provides a condensed DSM.

rveve

L

= = T
- -y == L - i
= e T L l'_.:?; |
.2 i
' rea —
s
R
— —— — - | - "ﬁl
=SS W EIIEEE . SRS L T e

Figure 2. Complete DSM for Ant version 1.3 (©2007 ASME)

350

3

layer 1 layer 2 layer 3
ant taskdefs compilers : 2
ant taskiefs 51"

types 9 | 53] * 3
uti 17 (1 1
wtil regexp

1 =
rmail * I
tar | =

"B
3 33 3

Figure 3. Condensed DSM for Ant version 1.3 (©2007 ASME)

APPROACH, METRICS, AND RESULTS

In our presentation and in [4] we provide further discussion of our approach, static and dynamic
complexity metrics, and results for seven generations of the Apache Ant application. Our analysis
suggests that the architecture of a new product does not magically emerge in the first version. Rather,
establishing the architecture of the product is a dynamic process that goes through distinct phases
which require different managerial competences.

REFERENCES

[1] IEEE. IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems. (Institute of Electrical and Electronics Engineers Standards Association, 2000).

[2] Parnas, D.L. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 1972, 15(12), 1053-1058.

[3] Shaw, M. and Garlan, D. Software Architecture: Perspectives on an Emerging Discipline.
(Prentice Hall, Upper Saddle River, NJ, 1996).

[4] Sosa, M.E., Browning, T.R. and Mihm, J. Studying the Dynamics of the Architecture of
Software Products. ASME 2007 International Design Engineering Technical Conf. &
Computers and Information in Engineering Conf. (IDETC/CIE 2007) Las Vegas, NV, 2007).

[5] MacCormack, A., Rusnak, J. and Baldwin, C.Y. Exploring the Structure of Complex Software
Designs: An Empirical Study of Open Source and Proprietary Code. Management Science,
2006, 52(7), 1015-1030.

[6] Sangal, N., Jordan, E., Sinha, V. and Jackson, D. Using Dependency Models to Manage
Complex Software Architecture. 20" ACM SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages And Applications (OOPSLA), pp. 167-176 San Diego, CA, 2005).

[7] Sullivan, K.J., Griswold, W.G., Cai, Y. and Hallen, B. The Structure and Value of Modularity in
Software Design. ACM SIGSOFT Software Engineering Notes, 2001, 26(5), 99-108.

[8] Browning, T.R. Applying the Design Structure Matrix to System Decomposition and
Integration Problems: A Review and New Directions. /[EEE Transactions on Engineering
Management, 2001, 48(3), 292-306.

[9] Sosa, M.E., Eppinger, S.D. and Rowles, C.M. A Network Approach to Define Modularity of
Components in Product Design. Journal of Mechanical Design, 2007(forthcoming).

[10] Steward, D.V. The Design Structure System: A Method for Managing the Design of Complex

Systems. IEEE Transactions on Engineering Management, 1981, 28(3), 71-74.

Contact: Tyson R. Browning

Neeley School of Business, Texas Christian University

Department of Information Systems and Supply Chain Management
Fort Worth, Texas

USA

817-257-5069
t.browning@tcu.edu
WWWw.tysonbrowning.com

351

INSEAD

TheNEELEY
CAPITALIZE ON COMPLEXITY SCH00LofBUSINESS TCEW

OTH INTERNATIONAL DSM CONFERENCE

Dynamic, DSM-based Analysis of

Software Product Architectures
‘4/" Manuel Sosa

" INSEAD, Fontainebleau, France

/ \@" Tyson Browning

AR Neeley School of Business, Texas Christian University

‘ "‘ Fort Worth, Texas, USA

ﬁ‘ Jiirgen Mihm

‘fa INSEAD, Fontainebleau, France

%

%\"‘ Based on a paper in the Proceedings of the ASME Design Theory and

/, Methodology Conference, Las Vegas, NV, September 2007

Tum Q=
Product Development - 4
Technische Universitat Miinchen

TheNEELEY
SCH0OLof BUSINESS TCW

INSEAD

CaPITALIZE ON COMPLEXITY

The Dynamics of Software Products

Vo

*

)x(» Software products change rapidly and are developed in an additive
manner

+ Software is embedded everywhere

@’ « Software architectures are typically well codified which facilitates their
' systematic representation

+ Changes in the software architecture are expected to be associated
‘%;’A with changes in the organizational structures

TUTI =Q=
Product Development = =
Technische Universitat Minchen

9th International DSM Conference 2007- 2

352

INSEAD

TheNEELEY
CaPITALIZE ON COMPLEXITY SCHOOLof BUSINESS TCEW

The Dynamics of Architectures

* Research Questions
‘ — How does the architecture of software products evolve over time?
e — How do organizations cope with such changes?

* Why is this interesting?

4 — Understanding the dynamics of complex systems is a key to

7 @’ managing transitions

A } — Little attention has been put into studying the dynamics of system
' (and organizational) architectures

Tum -Q-
Product Development - .
Technische Universitat Miinchen

9th International DSM Conference 2007- 3

TheNEELEY
SCH0OL of BUSINESS TCW

INSEAD

CAPITALIZE ON COMPLEXITY

Related Work

* Technology life cycle and architectural innovation
— Abernathy and Utterback (1978), Utterback (1994)
— Henderson and Clark (1990)

\
\\ \//_., * Representing product architectures
/i\ — Ulrich (1995), Pimmler & Eppinger (1994), Sosa et al. (2003, 2007)
‘4/ — Guo and Gershenson (2004), Holtta et al. (2005)

— MacCormack et al. (2006)

/« ' + Complexity and modularity

(' — Kauffman (1993), Warfield (2000), Suh (2001)

’V“‘ — Baldwin and Clark (2000), Pich et al. (2002), Mihm et al. (2003), Ethiraj and
' | Levinthal (2004)

‘/” * Open-source software development
vf — von Krogh and von Hippel (2006), Roberts et al. (2006)

TI.ITI =Q=
Product Development = =
Technische Universitat Miinchen

9th International DSM Conference 2007- 4

353

INSEAD

THeMEELEY)
CaPITALIZE ON COMPLEXITY SCHOOLof BUSINESS TCEW

Our Research Approach

| 1. Capture product architecture
P S — Intrinsic complexity
— Modules and layers

2. Capture organizational attributes
‘\ ‘ — Workload

7 ”‘y‘%ﬂ — Resources

4f — Coordination

/

¢ 3. Compare product architecture metrics and organizational attributes

9/’ (over time
ge\ ¢

Tum Q=
Product Development o - =
Technische Universitat Minchen

9th International DSM Conference 2007- 5

INSEAD THRNEELEY
CariTALIZE ON COMPLEXITY SCH0OL of BUSINESS TCW
Apache Ant
 The product e
/\\i — A java-based tool for automating the software build process
P — First version released in July 2000
Sﬁ‘kf/ — Seven major releases have followed (with minor releases in
k between)

'} * The organization
— Open source project

'(¢ — Users, developers, and committers
l“/} — E-mail archives for each version are available
W

TUTI Q=
Product Development — = 2
Technische Universitat Miinchen

9th International DSM Conference 2007- 6

354

IN COOPERATION WITH BMW Group

Ant 1.3

TheNEELEY
SCH00Lof BUBINESS TCW

taskdefs

[

*

Ant 1.3

(e

m Product Development

Tum @E@?

Technische Universitat Miinchen

IN COOPERATION WITH BMW GROUP

9th International DSM Conference 2007- 7

TheNEELEY
SCHDOLfBUSINESS 7CY

Tree Representation: Layers and Modules

Ant version

root

/N

Layer 3 compilers

*

Module with 12
components
(bottom-level)

000!

Module with 7 Module with 8
components components

(bottom-level) (bottom-level)

Module with 63
components
(bottom-level)

Layer 1 ant
Layer 2 taskdefs util

1.3

(Top-level)

Module with 3
components
(bottom-level)

components
(bottom-level)

regexp

Module with 23
components
(bottom-level)

Module with 4
components
(bottom-level)

TUTI @E@?

Technische Universitat Minchen

m Product Development

9th International DSM Conference 2007- 8

355

IN COOPERATION WITH BMW GROUP INSEAD TRRNEELEY
SCH00L of BUINESS TCU

Matrix Representation: Layers, Modules, and Interfaces

EZ — o S e 2 |;_
'ﬂ:’.-. v
L2k) =
e\ 1 4 -
L 17} ==
\ \ T =
o) ; = i
o
m Comiatas
) = —
| ' nt =
’ |\ Al =
\
\ St
type
util
]
i
mail{ e °
tar{ — - EREEE
9th International DSM Conference 2007- 9

IN COOPERATION WITH BMW GROUP INSEAD TRRNEELEY
SCH00L ol BUSINESS TCl

Architectural Metrics

. . . TV s o S e T =
e Intrinsic complexity - | - feedbbci Laver|3
Number of elements and their interactions
C,=n*k i
-The effects of modules and layers y oo
i ithi ' Complexity
Avg complex_lty within module !l i -
Avg complexity across modules (per layer) | Fwd, Layer 1
cross - module complexity = m fecdforward LOOk inSide the
ieracions architecture!

«Dynamic architectural changes between versions
-Total number of modules in version x, (N,)
-Proportion of modules added in version x, (D, ,)
-Proportion of modules eliminated in version x, (D, ,)

D A D,, £,
a,x N ” N

x x y
~0-
Product Development »
Technische Universitat Minchen

9th International DSM Conference 2007- 10

356

INSEAD

The NEELEY
CAPITALIZE ON COMPLEXITY SCH0OLof BUSINESS TC€W

Aggregated DSM Representation (Ant 1.3)

layer 1 layer 2 layer 3

\ ant taskdefs compilers *
/\ ant taskdefs *
\ \\ ant types 9 53 * 3
/_4{_ ant util 17 [1] * 1
‘Q_/ ant util regexp R
4) ant 12 | 169 22 2 3 *
j‘ mail . *

() tar *
ARy
i ”' B Interfaces at layer 1

‘Qn / [Interfaces at layer 2
%
A /‘ B Interfaces at layer 3

=@=
Product Development =
Technische Universitat Miinchen

9th International DSM Conference 2007- 11

INSEAD

TheNEELEY
CAPITALIZE ON COMPLEXITY SCHOOLof BUSINESS €U

Product Architecture Dynamics

layer 1 layer2 layer3
Ant 1.1 oreilly serviet
apache tools ant taskdefs *
apache tools ant 24| *
apache tools tar 4
Ant version 120
(122 companents)
oot
T N
_— \\\\
Ant 1.2 b P
R
- e N
\ iin P
A < 0 0 0
.\\ /7\\ iZ[o 52 N I N R G
AN
>
\. /{ =k J‘m\
4
\ 4
T Atvemenia
7\ o oot o) layer 1
\ A ant = T 7 T 71
/\ P ant 5 -
- AN ant 5 [3
ant P ant 171 1
PRIEIE e : BT :
< T T ar\t‘ 12 (169] 22] 2 [3
mail
| & ‘ A -
/ Artversion 1 40 Tayer 1
/ {178 components) ant
root ant
ant = 7
o N ant 2
/ \\\ ant TIs 7 -
7]
Ant 1.4 - o 50 7
mal ar o ant iti 2gexp 2
/_\ ant - P I T 5
~ . -) To |10 [2as| 4[4 [3[30
g W B
[
//‘\ //\ =
) oy -
‘ ' Ant vereion 1.50
’ (293 components)
‘ toot
Ant 1.5 um/ w2 mel W g
m ‘‘‘‘‘‘‘‘‘‘
AT NN =
N R R o - - -
ko | il 9th International DSM Conference 2007- 12

357

INSEAD

TheNEELEY
CaPITALIZE ON COMPLEXITY SCHOOLof BUSINESS TCEW

Product Complexity

! Product Complexity (n * k) Nodes (n) and Links (k)
/\\'
|~ 600000
iy
4
). N 500000 - 400 1600
~ 400000 350 | 1 1400
300 + + 1200 £
“ 300000 | 250 | 1 10002
‘ o
| 13
A | [a0 E
{ 100000 - 100 + +400 =
hj ' 50 -+ + 200
%1 0 : : : 0 0
'1 0 500 1000 1500 2000 Days from first release
{ Days from first release
;9' == number of nodes =ll=number of links

TI.ITI =Q=
Product Development = —
Technische Universitat Minchen

9th International DSM Conference 2007- 13

TheNEELEY
SCHO0Lof BUSINESS TCW

INSEAD

CaAPITALIZE ON COMPLEXITY

Dynamic Architectural Metrics

} Number of Modules (N) Dynamic Metrics

150% -

125% -

100% +

75% A

50% -

25% -

0% T L

(, 0+ . . : 0 500 1000 1500 2000
‘ W 0 500 1000 1500 2000 Days from first release

Days from first release

e=fl}=——=Combined Changes = =¢= -Eliminations — ®— Additions

TI.ITI ‘-'—'@:
Product Development = =
Technische Universitat Minchen

9th International DSM Conference 2007- 14

358

IN COOPERATION WITH BMW Group

INSEAD

TheNEELEY
SCH00Lof BUBINESS TCW

A Model of Architectural Evolution

* Formation phase
— Searching for the “optimal” architecture
« Ant1.1,1.2,1.3

« “Dominant” architecture establishes
in Ant 1.3, 1.4

.+ Growth phase
— Product grows rapidly
« Ant1.4,1.5,1.6

» Saturation phase
— Limits to growth appear
* Ant 1.6, 1.65

m Product Development

IN COOPERATION WITH BMW GROUP

Product
Modules

Days from
first release

Tm @“E@?

Technische Universitat Minchen
9th International DSM Conference 2007- 15

INSEAD

TheNEELEY
SCH00Lof BUBINESS TCW

Looking Inside the Architecture

500 1000 1500 2000

Days from first release

o = TR E AT ST S AT . .
= Within ;
=] Module 300
H 200 q
== — 17/ Complexity]
------ i 0
S 5 0
Across
Module
- Complexity
~ (fwd, layer 2) 7
= Fwd, Layer 1 61
5
Across ol
Module 3
Complexity 2?1
14
0

m Product Development

500 1000 1500 2000

Days from first release

TUTI @“E@?

Technische Universitat Miinchen
9th International DSM Conference 2007- 16

359

IN COOPERATION WITH BMW GROUP INSEAD TRGNEELEY
SCHOOL of BUAINESS TC

Organizational Attributes

X/ + Workload
B — Number of improvements and new features
— Number of bug fixes

* Resources
— Number of developers

» Coordination effort
— Number of e-mails exchanged by developers

Tum =Q=
Product Development
Technische Universitat Minchen

9th International DSM Conference 2007- 17

IN COOPERATION WITH BMW GROUP INSEAD THENEELEY
SCHOOLof BUSINESS TCU

Organizational Attributes

180
160
140

Changes and 120
L Bug Fixes 80
L 60
‘ 40
20
0 T T T 1
0 500 1000 1500 2000

Days from first release

=i Bug fixes —#— Improvements and new features

20000 - Coordination Effort

18000
16000
14000
12000
10000
8000
6000
4000
T T T 2000

0 500 1000 1500 2000 0 4 . . .

Days from first release 0 500 1000 1500 2000

Days from first release

Tum =Q=
Product Development o
Technische Universitat Minchen

9th International DSM Conference 2007- 18

Resources

Emails

360

INSEAD

TheNEELEY
CAPITALIZE ON COMPLEXITY SCH0OLof BUSINESS TCEW

Complexity and Workload

* Total workload * Product changes
A * Product complexity * Cross-module complexity
\
i P
@
7\
| 300 - — 600000 - 180
> £ 1 160
J ‘ 250 1 [o000 £ % T a0 &
/ \‘ 200 1400000 & € 1120 &
4/ 150 300000 & & 71008
%] T g 9 T80 8
| 100 1200000 S & +60 B
VA 3T = 140 &
’%‘ 50 - + 100000 2 ;; [5 =
'g 0 T T T 0 0 T . . 0
‘ \ 0 500 1000 1500 2000 0 500 1000 1500 2000
) /‘ Days from first release Days from first release
i’;’f = Total workload == Product Complexity —#— Complexity ——Workload (changes only)
(4

Tm Q=
Product Development o - =
Technische Universitat Minchen

9th International DSM Conference 2007- 19

THeNEELEY
SCH00L of BUSINESS 7CW

INSEAD

CAPITALIZE ON COMPLEXITY

Conclusions

* We introduced a structured approach and simple metrics to explore the
\ dynamics of software architectures

. The architecture of (software) products evolves through distinct phases
,\‘g instead of magically appearing

4 * By looking inside the architecture, we found evidence of the co-

‘\" evolution of product and organizational structures

TI.ITI =Q=
Product Development = =
Technische Universitat Miinchen

9th International DSM Conference 2007- 20

361

