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1 INTRODUCTION

We explore how the architecture of a product evolves over several generations. We propose a
theoretical framework and research approach to study the dynamics of complex product architectures.
We illustrate our approach by examining the architecture of software products because they are
complex, exhibit fast change rates (like fruit flies in studies of biological evolution), and offer
(through their source code) an efficient, reliable, and standardized medium to capture their
architecture. The IEEE defines product architecture as “the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution” [1]. In the software domain, architecting involves
organizing or structuring the code into modules and layers with the appropriate set of dependencies
between them [2, 3].
This paper reports results from [4], in which we provide a theoretical framework, a basic set of
metrics, and a research approach for exploring the dynamics of complex software architectures. Then,
based on empirical evidence from a case study of an open source project, we uncover several patterns
and insights regarding the dynamics of software architectures and their relationships to organizational
dynamics. These findings indicate several promising avenues for future research.
To explore the dynamics of complex software architectures, we structure our research approach in
three steps:

1. Capture the evolution of software architecture properties.

2. Capture the evolution of organizational attributes.

3. Compare the dynamics of product architectures and organizational attributes.
This abstract provides only a brief introduction to our approach. Our presentation will include metrics
and results. Additional discussion is also available in [4].

2 REPRESENTING SOFTWARE ARCHITECTURE

To measure the complexity associated with software architectures, we first need to represent how the
components of the product interact, how they are grouped into modules, and how modules are
organized into a hierarchy. To capture the basic features that characterize complex system
architectures, we use two complementary representations: a hierarchy tree and a partitioned product
DSM. A tree representation indicates module membership and layering, whereas a product DSM
captures the interactions between components both within and across modules.

Figure 1 shows the tree representation of one of the versions of the software product we study in this
paper, Ant 1.3. The tree representation shows how the 126 components comprising this version of the
product are organized into eight modules and three layers.

In the software domain, a DSM representation has been used to capture the interactions between “class
functions” that comprise software applications [5-7]. Typically, the rows and columns in a product
DSM are ordered so as to maximize the density of clusters of components along the diagonal, so that
clusters (modules) encapsulate the majority of interfaces. This approach, called clustering [8], is
generally recommended for hardware products because of the highly symmetric nature of many spatial
and structural design dependencies between physical components [9]. However, when analyzing the
architecture of software products, we instead use the clusters defined by the system architects and
partition (triangularize) the DSM, also called sequencing [8], to uncover the dependencies that define
the truly coupled components.
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Figure 1. Tree diagram of Ant version 1.3 (©2007 ASME)

Those familiar with DSM techniques will notice two innovations here. First, we are applying a
sequencing algorithm to a component-based DSM, a combination which did not exist [8] prior to the
work by Sangal et al. [6]. Second, we reverse the typical order of dependency in the DSM.
Traditionally, a DSM using the convention where the components labeling the columns depend on the
components labeling the rows would show feedback below the diagonal. This is done because, as is
conventional in software, the “higher level” components are said to depend on the “lower level” ones
for functionality, and, unlike other time-based DSM applications to date, all of the components indeed
exist simultaneously.

In a complex software product with several layers, like in Error! Reference source not found., we
partition the DSM layer by layer so that modules within the same layer are arranged so as to minimize
super-diagonal marks. (To sequence within each layer, we use the algorithm originally proposed by
Steward [10].) Error! Reference source not found. shows a DSM representation of Ant 1.3. The
DSM shown is a 126x126 matrix with 476 off-diagonal marks representing the “calls” between the
126 “classes” that comprise Ant 1.30. The DSM is sequenced by layer so that feedback marks above
the diagonal are minimized both within and across modules. This DSM has 12 marks above the
diagonal, six of them in layer 2 within module (“ant”—“*”) and six of them across modules (four
within layer 2 and two within layer 3. Note that the branches of the tree in Error! Reference source
not found. are arranged to correspond to the sequenced DSM. The branches on the left of the tree
depend on the branches on the right. Figure 3 provides a condensed DSM.
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Figure 2. Complete DSM for Ant version 1.3 (©2007 ASME)
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Figure 3. Condensed DSM for Ant version 1.3 (©2007 ASME)

APPROACH, METRICS, AND RESULTS

In our presentation and in [4] we provide further discussion of our approach, static and dynamic
complexity metrics, and results for seven generations of the Apache Ant application. Our analysis
suggests that the architecture of a new product does not magically emerge in the first version. Rather,
establishing the architecture of the product is a dynamic process that goes through distinct phases
which require different managerial competences.
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The Dynamics of Software Products

Vo

*

)x( » Software products change rapidly and are developed in an additive
manner

+ Software is embedded everywhere

@’ « Software architectures are typically well codified which facilitates their
' systematic representation

+ Changes in the software architecture are expected to be associated
‘%;’A with changes in the organizational structures
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The Dynamics of Architectures

* Research Questions
‘ — How does the architecture of software products evolve over time?
e — How do organizations cope with such changes?

*  Why is this interesting?

4 — Understanding the dynamics of complex systems is a key to

7 @’ managing transitions

A } — Little attention has been put into studying the dynamics of system
' (and organizational) architectures
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Related Work

* Technology life cycle and architectural innovation
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Our Research Approach

| 1. Capture product architecture
P S — Intrinsic complexity
— Modules and layers

2. Capture organizational attributes
‘\ ‘ — Workload

7 ”‘y‘%ﬂ — Resources

4f — Coordination

/

¢ 3. Compare product architecture metrics and organizational attributes

9/’ ( over time
ge\ ¢
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Apache Ant
 The product e
/\\i — A java-based tool for automating the software build process
P — First version released in July 2000
Sﬁ‘kf/ — Seven major releases have followed (with minor releases in
k between)

'} * The organization
— Open source project

'( ¢ — Users, developers, and committers
l“/} — E-mail archives for each version are available
W
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Tree Representation: Layers and Modules
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Architectural Metrics
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Aggregated DSM Representation (Ant 1.3)
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Product Architecture Dynamics
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Product Complexity
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Dynamic Architectural Metrics

} Number of Modules (N) Dynamic Metrics

150% -

125% -

100% +

75% A

50% -

25% -

0% T L

(, 0+ . . : 0 500 1000 1500 2000
‘ W 0 500 1000 1500 2000 Days from first release

Days from first release

e=fl}=——=Combined Changes = =¢= -Eliminations — ®— Additions

TI.ITI ‘-'—'@:
Product Development = =
Technische Universitat Minchen

9th International DSM Conference 2007- 14

358



IN COOPERATION WITH BMW Group

INSEAD

TheNEELEY
SCH00Lof BUBINESS TCW

A Model of Architectural Evolution

* Formation phase
— Searching for the “optimal” architecture
« Ant1.1,1.2,1.3

« “Dominant” architecture establishes
in Ant 1.3, 1.4

.+ Growth phase
— Product grows rapidly
« Ant1.4,1.5,1.6

» Saturation phase
— Limits to growth appear
* Ant 1.6, 1.65
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Looking Inside the Architecture
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Organizational Attributes

X/ +  Workload
B — Number of improvements and new features
— Number of bug fixes

* Resources
— Number of developers

» Coordination effort
— Number of e-mails exchanged by developers
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Organizational Attributes
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Complexity and Workload

* Total workload * Product changes
A * Product complexity * Cross-module complexity
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Conclusions

* We introduced a structured approach and simple metrics to explore the
\ dynamics of software architectures

. The architecture of (software) products evolves through distinct phases
,\‘g instead of magically appearing

4 * By looking inside the architecture, we found evidence of the co-

‘\" evolution of product and organizational structures
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