
9TH INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’07
16 – 18 OCTOBER 2007, MUNICH, GERMANY

DYNAMIC, DSM-BASED ANALYSIS OF SOFTWARE
PRODUCT ARCHITECTURES
Manuel E. Sosa1, Tyson R. Browning2, and Jürgen Mihm1
1INSEAD, Fontainebleau, France
2Neeley School of Business, Texas Christian University, Fort Worth, Texas, USA

Keywords: product architecture, modularity, complexity, organizational structure, software
development

1 INTRODUCTION
We explore how the architecture of a product evolves over several generations. We propose a
theoretical framework and research approach to study the dynamics of complex product architectures.
We illustrate our approach by examining the architecture of software products because they are
complex, exhibit fast change rates (like fruit flies in studies of biological evolution), and offer
(through their source code) an efficient, reliable, and standardized medium to capture their
architecture. The IEEE defines product architecture as “the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution” [1]. In the software domain, architecting involves
organizing or structuring the code into modules and layers with the appropriate set of dependencies
between them [2, 3].
This paper reports results from [4], in which we provide a theoretical framework, a basic set of
metrics, and a research approach for exploring the dynamics of complex software architectures. Then,
based on empirical evidence from a case study of an open source project, we uncover several patterns
and insights regarding the dynamics of software architectures and their relationships to organizational
dynamics. These findings indicate several promising avenues for future research.
To explore the dynamics of complex software architectures, we structure our research approach in
three steps:

1. Capture the evolution of software architecture properties.
2. Capture the evolution of organizational attributes.
3. Compare the dynamics of product architectures and organizational attributes.

This abstract provides only a brief introduction to our approach. Our presentation will include metrics
and results. Additional discussion is also available in [4].

2 REPRESENTING SOFTWARE ARCHITECTURE
To measure the complexity associated with software architectures, we first need to represent how the
components of the product interact, how they are grouped into modules, and how modules are
organized into a hierarchy. To capture the basic features that characterize complex system
architectures, we use two complementary representations: a hierarchy tree and a partitioned product
DSM. A tree representation indicates module membership and layering, whereas a product DSM
captures the interactions between components both within and across modules.
Figure 1 shows the tree representation of one of the versions of the software product we study in this
paper, Ant 1.3. The tree representation shows how the 126 components comprising this version of the
product are organized into eight modules and three layers.
In the software domain, a DSM representation has been used to capture the interactions between “class
functions” that comprise software applications [5-7]. Typically, the rows and columns in a product
DSM are ordered so as to maximize the density of clusters of components along the diagonal, so that
clusters (modules) encapsulate the majority of interfaces. This approach, called clustering [8], is
generally recommended for hardware products because of the highly symmetric nature of many spatial
and structural design dependencies between physical components [9]. However, when analyzing the
architecture of software products, we instead use the clusters defined by the system architects and
partition (triangularize) the DSM, also called sequencing [8], to uncover the dependencies that define
the truly coupled components.

349

Figure 1. Tree diagram of Ant version 1.3 (©2007 ASME)

Those familiar with DSM techniques will notice two innovations here. First, we are applying a
sequencing algorithm to a component-based DSM, a combination which did not exist [8] prior to the
work by Sangal et al. [6]. Second, we reverse the typical order of dependency in the DSM.
Traditionally, a DSM using the convention where the components labeling the columns depend on the
components labeling the rows would show feedback below the diagonal. This is done because, as is
conventional in software, the “higher level” components are said to depend on the “lower level” ones
for functionality, and, unlike other time-based DSM applications to date, all of the components indeed
exist simultaneously.
In a complex software product with several layers, like in Error! Reference source not found., we
partition the DSM layer by layer so that modules within the same layer are arranged so as to minimize
super-diagonal marks. (To sequence within each layer, we use the algorithm originally proposed by
Steward [10].) Error! Reference source not found. shows a DSM representation of Ant 1.3. The
DSM shown is a 126x126 matrix with 476 off-diagonal marks representing the “calls” between the
126 “classes” that comprise Ant 1.30. The DSM is sequenced by layer so that feedback marks above
the diagonal are minimized both within and across modules. This DSM has 12 marks above the
diagonal, six of them in layer 2 within module (“ant”—“*”) and six of them across modules (four
within layer 2 and two within layer 3. Note that the branches of the tree in Error! Reference source
not found. are arranged to correspond to the sequenced DSM. The branches on the left of the tree
depend on the branches on the right. Figure 3 provides a condensed DSM.

Figure 2. Complete DSM for Ant version 1.3 (©2007 ASME)

350

Figure 3. Condensed DSM for Ant version 1.3 (©2007 ASME)

3 APPROACH, METRICS, AND RESULTS
In our presentation and in [4] we provide further discussion of our approach, static and dynamic
complexity metrics, and results for seven generations of the Apache Ant application. Our analysis
suggests that the architecture of a new product does not magically emerge in the first version. Rather,
establishing the architecture of the product is a dynamic process that goes through distinct phases
which require different managerial competences.

REFERENCES
[1] IEEE. IEEE Recommended Practice for Architectural Description of Software-Intensive

Systems. (Institute of Electrical and Electronics Engineers Standards Association, 2000).
[2] Parnas, D.L. On the Criteria To Be Used in Decomposing Systems into Modules.

Communications of the ACM, 1972, 15(12), 1053-1058.
[3] Shaw, M. and Garlan, D. Software Architecture: Perspectives on an Emerging Discipline.

(Prentice Hall, Upper Saddle River, NJ, 1996).
[4] Sosa, M.E., Browning, T.R. and Mihm, J. Studying the Dynamics of the Architecture of

Software Products. ASME 2007 International Design Engineering Technical Conf. &
Computers and Information in Engineering Conf. (IDETC/CIE 2007) Las Vegas, NV, 2007).

[5] MacCormack, A., Rusnak, J. and Baldwin, C.Y. Exploring the Structure of Complex Software
Designs: An Empirical Study of Open Source and Proprietary Code. Management Science,
2006, 52(7), 1015-1030.

[6] Sangal, N., Jordan, E., Sinha, V. and Jackson, D. Using Dependency Models to Manage
Complex Software Architecture. 20th ACM SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages And Applications (OOPSLA), pp. 167-176 San Diego, CA, 2005).

[7] Sullivan, K.J., Griswold, W.G., Cai, Y. and Hallen, B. The Structure and Value of Modularity in
Software Design. ACM SIGSOFT Software Engineering Notes, 2001, 26(5), 99-108.

[8] Browning, T.R. Applying the Design Structure Matrix to System Decomposition and
Integration Problems: A Review and New Directions. IEEE Transactions on Engineering
Management, 2001, 48(3), 292-306.

[9] Sosa, M.E., Eppinger, S.D. and Rowles, C.M. A Network Approach to Define Modularity of
Components in Product Design. Journal of Mechanical Design, 2007(forthcoming).

[10] Steward, D.V. The Design Structure System: A Method for Managing the Design of Complex
Systems. IEEE Transactions on Engineering Management, 1981, 28(3), 71-74.

Contact: Tyson R. Browning
Neeley School of Business, Texas Christian University
Department of Information Systems and Supply Chain Management
Fort Worth, Texas
USA
817-257-5069
t.browning@tcu.edu
www.tysonbrowning.com

351

Dynamic, DSM-based Analysis of
Software Product Architectures

Manuel Sosa
INSEAD, Fontainebleau, France

Tyson Browning
Neeley School of Business, Texas Christian University

Fort Worth, Texas, USA

Jürgen Mihm
INSEAD, Fontainebleau, France

Based on a paper in the Proceedings of the ASME Design Theory and
Methodology Conference, Las Vegas, NV, September 2007

9th International DSM Conference 2007- 2

The Dynamics of Software Products

• Software is embedded everywhere

• Software products change rapidly and are developed in an additive
manner

• Software architectures are typically well codified which facilitates their
systematic representation

• Changes in the software architecture are expected to be associated
with changes in the organizational structures

352

9th International DSM Conference 2007- 3

The Dynamics of Architectures

• Research Questions
– How does the architecture of software products evolve over time?
– How do organizations cope with such changes?

• Why is this interesting?
– Understanding the dynamics of complex systems is a key to

managing transitions
– Little attention has been put into studying the dynamics of system

(and organizational) architectures

9th International DSM Conference 2007- 4

Related Work

• Technology life cycle and architectural innovation
– Abernathy and Utterback (1978), Utterback (1994)
– Henderson and Clark (1990)

• Representing product architectures
– Ulrich (1995), Pimmler & Eppinger (1994), Sosa et al. (2003, 2007)
– Guo and Gershenson (2004), Hölttä et al. (2005)
– MacCormack et al. (2006)

• Complexity and modularity
– Kauffman (1993), Warfield (2000), Suh (2001)
– Baldwin and Clark (2000), Pich et al. (2002), Mihm et al. (2003), Ethiraj and

Levinthal (2004)

• Open-source software development
– von Krogh and von Hippel (2006), Roberts et al. (2006)

353

9th International DSM Conference 2007- 5

Our Research Approach

1. Capture product architecture
– Intrinsic complexity
– Modules and layers

2. Capture organizational attributes
– Workload
– Resources
– Coordination

3. Compare product architecture metrics and organizational attributes
over time

9th International DSM Conference 2007- 6

Apache Ant

• The product
– A java-based tool for automating the software build process
– First version released in July 2000
– Seven major releases have followed (with minor releases in

between)

• The organization
– Open source project
– Users, developers, and committers
– E-mail archives for each version are available

354

9th International DSM Conference 2007- 7

Ant 1.3

tarmail

ant

*

types util

taskdefs

Ant 1.3

9th International DSM Conference 2007- 8

Tree Representation: Layers and Modules

root

tarmailant

taskdefs types util

compilers * * regexp

(Top-level)

Layer 1

Layer 2

Layer 3

Module with 7
components
(bottom-level)

Module with 63
components
(bottom-level)

Module with 12
components
(bottom-level)

Module with 8
components
(bottom-level)

Module with 4
components
(bottom-level)

Module with 3
components
(bottom-level)

Module with 6
components
(bottom-level)

*

Module with 23
components
(bottom-level)

Ant version 1.3

355

9th International DSM Conference 2007- 9

Matrix Representation: Layers, Modules, and Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

1 . 1
2 1 .
3 1 .
4 1 .
5 1 .
6 1 1 1 1 .
7 1 . 1
8 .
9 .

10 .
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 1 .
30 1 1 .
31 .
32 .
33 .
34 1 1 1 1 1 .
35 .
36 .
37 .
38 .
39 1 .
40 1 1 1 1 1 1 1 1 1 .
41 .
42 .
43 1 .
44 1 1 1 1 1 1 .
45 .
46 .
47 .
48 .
49 .
50 1 1 .
51 .
52 .
53 1 1 1 1 1 1 .
54 .
55 .
56 .
57 .
58 .
59 .
60 1 1 .
61 1 .
62 1 .
63 1 1 1 .
64 1 1 .
65 1 1 1 1 1 1 .
66 1 1 1 1 1 1 1 1 1 1 1 1 .
67 1 .
68 1 .
69 1 1 1 .
70 1 .
71 1 1 .
72 1 1 2 2 2 1 2 2 1 1 2 1 2 2 2 1 2 1 1 .
73 1 2 .
74 1 1 1 .
75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1
76 1 1 1 .
77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
78 1 1 1 1 1 .
79 1 1 1 1 1 .
80 1 1 1 1 1 1 . 1
81 1 1 1 1 1 1 .
82 1 1 .
83 . 1
84 1 .
85 1 1 .
86 1 .
87 1 1 1 .
88 .
89 1 1 1 1 1 1 1 .
90 1 1 1 1 1 1 1 1 1 1 .
91 .
92 .
93 1 .
94 1 1 1 .
95 .
96 .
97 1 1 1 1 1 1 1 .
98 .
99 .

100 .
101 1 1 1 1 .
102 1 1 .
103 1 1 . 1
104 1 1 1 1 1 . 1
105 1 1 1 . 1
106 1 .
107 1 1 1 .
108 1 1 . 1
109 1 1 1 1 1 1 1 1 . 1
110 1 . 1
111 1 1 1 .
112 1 .
113 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
114 1 .
115 1 1 1
116 1 1 1 1 1
117 1 1
118 1
119
120
121 1
122 1
123 1 1
124
125
126

tar TarInputStream
TarOutputStream
TarEntry
TarBuffer
TarConstants
TarUtils

Location
PathTokenizer

MailMessage
MailPrintStream
SmtpResponseReader

Project
DirectoryScanner
BuildException
FileScanner

TaskAdapter
Target
Task
RuntimeConfigurable

ProjectHelper
BuildEvent
UnknownElement
IntrospectionHelper

Constants
DesirableFilter
AntClassLoader
Main
NoBannerLogger
XmlLogger
DefaultLogger
BuildLogger
BuildListener

RegexpPatternMapper
SourceFileScanner
FileNameMapper
JakartaOroMatcher
JakartaRegexpMatcher
RegexpMatcherFactory
RegexpMatcher

EnumeratedAttribute
Reference
ZipScanner

DOMElementWriter
FlatFileNameMapper
GlobPatternMapper
IdentityMapper
MergingMapper

CommandlineJava
Commandline
Environment
Mapper
Path
ZipFileSet
FileSet
PatternSet
DataType

StreamPumper
Taskdef
Touch
XSLTLiaison

ExecuteStreamHandler
ExecuteWatchdog
LogOutputStream
MatchingTask

XSLTProcess
Zip
Copy
ExecuteJava

Rmic
Tar
Untar
UpToDate

JikesOutputParser
Move
PumpStreamHandler
Replace

Expand
FixCRLF
Get
Javac

Jar
LogStreamHandler
Copydir
Delete

Property
Execute
War
CompileTask

Java
Javadoc
Jikes
Patch

GenerateKey
SignJar
Cvs
ExecTask

Chmod
Transform
Ant
ExecuteOn

SendEmail
TaskOutputStream
Tstamp
CallTarget

KeySubst
Mkdir
Rename
SQLExec

Filter
GUnzip
GZip
JavacOutputStream

DefaultCompilerAdapter
CompilerAdapter
AntStructure
Available
Copyfile
Deltree
Echo
Exec
Exit

$root

CompilerAdapterFactory
Javac12
Javac13
Jikes
Jvc

tar
mail

ant

util

*

types

ta
sk

d
e
fs

9th International DSM Conference 2007- 10

Architectural Metrics
•Intrinsic complexity

Number of elements and their interactions

C1 = n*k

•The effects of modules and layers

Within
Module

complexity

Avg complexity within module

Look inside the
architecture!

Across
Module

Complexity
(fwd, layer 2)

Fwd, Layer 1

feedback, Layer 3

cross - module complexity = m feedforward
interactions

Avg complexity across modules (per layer)

•Dynamic architectural changes between versions
–Total number of modules in version x, (Nx)
–Proportion of modules added in version x, (Da,x)
–Proportion of modules eliminated in version x, (De,x)

Da,x Ax

Nx

De,x Ex

Nx

356

9th International DSM Conference 2007- 11

Aggregated DSM Representation (Ant 1.3)

Interfaces at layer 1

Interfaces at layer 2

Interfaces at layer 3

layer 1 layer 2 layer 3
ant taskdefs compilers * 2
ant taskdefs 5 *
ant types 9 53 * 3
ant util 17 1 * 1
ant util regexp 2 *
ant 12 169 22 2 3 *
mail 1 *
tar 4 *

9th International DSM Conference 2007- 12

Product Architecture Dynamics
layer 1 layer 2 layer 3

oreilly servlet *
apache tools ant taskdefs *
apache tools ant 124 *
apache tools tar 4 *

Ant 1.1

layer 1 layer 2 layer 3 layer 4
ant taskdefs optional *
ant taskdefs optional ejb *
ant taskdefs optional javacc *
ant taskdefs optional jlink *
ant taskdefs optional jsp *
ant taskdefs optional metamata *
ant taskdefs optional perforce *
ant taskdefs optional vss *
ant taskdefs 4 2 3 1 2 2 1 2 *
ant types 3 1 6 1 1 3 3 40 * 3
ant 12 9 5 2 4 3 1 6 166 17 *
mail 1 *
tar 4 *

Ant 1.2

layer 1 layer 2 layer 3
ant taskdefs compilers * 2
ant taskdefs 5 *
ant types 9 53 * 3
ant util 17 1 * 1
ant util regexp 2 *
ant 12 169 22 2 3 *
mail 1 *
tar 4 *

Ant 1.3

layer 1 layer 2 layer 3
ant listener *
ant taskdefs optional *
ant taskdefs compilers * 2
ant taskdefs rmic * 2
ant taskdefs 1 5 2 *
ant taskdefs condition 4 *
ant util 1 20 * 1 2
ant util regexp 2 *
ant types 15 6 68 1 * 5
ant 4 19 10 248 4 4 3 30 *
mail 1 *
tar 4 *
zip 2 *

Ant 1.4

layer 1 layer 2 layer 3
ant listener *
ant helper * 1
ant taskdefs cvslib *
ant taskdefs compilers * 2
ant taskdefs rmic * 2
ant taskdefs 4 6 3 *
ant taskdefs condition 12 * 2 3 1
ant taskdefs email 1 *
ant filters util 2 * 1
ant filters 1 2 *
ant types selectors 1 * 2 3
ant types 2 14 5 92 2 3 11 16 * 1 1 5
ant util facade 4 *
ant util 1 1 1 3 2 49 1 1 1 4 5 * 12
ant util regexp 1 2 2 *
ant 4 12 11 19 11 294 17 8 3 1 13 45 6 4 * 2
ant input 3 2 *

bzip2 4 *
mail 1 1 *
tar 4 *
zip 2 *

Ant 1.5

357

9th International DSM Conference 2007- 13

Product Complexity

0

100000

200000

300000

400000

500000

600000

0 500 1000 1500 2000

Days from first release

Product Complexity (n * k)

0
50

100
150
200
250
300
350
400

Days from first release

0
200
400
600
800
1000
1200
1400
1600

N
um

be
r o

f l
in

ks

number of nodes number of links

Nodes (n) and Links (k)

9th International DSM Conference 2007- 14

Dynamic Architectural Metrics

0

5

10

15

20

25

0 500 1000 1500 2000
Days from first release

Number of Modules (N)

0%

25%

50%

75%

100%

125%

150%

0 500 1000 1500 2000
Days from first release

Combined Changes Eliminations Additions

Dynamic Metrics

358

9th International DSM Conference 2007- 15

A Model of Architectural Evolution

• Formation phase
– Searching for the “optimal” architecture

• Ant 1.1, 1.2, 1.3
• “Dominant” architecture establishes

in Ant 1.3, 1.4

• Growth phase
– Product grows rapidly

• Ant 1.4, 1.5, 1.6

• Saturation phase
– Limits to growth appear

• Ant 1.6, 1.65

Days from
first release

Product
Modules

9th International DSM Conference 2007- 16

Looking Inside the Architecture

0

1

2

3

4

5

6

7

0 500 1000 1500 2000

Days from first release

Across
Module

Complexity

Across
Module

Complexity
(fwd, layer 2)

Fwd, Layer 1

feedback, Layer 3

0
100
200
300
400
500
600
700
800
900

0 500 1000 1500 2000

Days from first release

Within
Module

Complexity

359

9th International DSM Conference 2007- 17

Organizational Attributes

• Workload
– Number of improvements and new features
– Number of bug fixes

• Resources
– Number of developers

• Coordination effort
– Number of e-mails exchanged by developers

9th International DSM Conference 2007- 18

Organizational Attributes

0
20
40
60
80

100
120
140
160
180

0 500 1000 1500 2000

Days from first release

Bug fixes Improvements and new features

0
20
40
60
80

100
120
140
160
180

0 500 1000 1500 2000

Days from first release

Resources

Changes and
Bug Fixes

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 500 1000 1500 2000
Days from first release

Em

ai
ls

Coordination Effort

360

9th International DSM Conference 2007- 19

Complexity and Workload

0

50

100

150

200

250

300

0 500 1000 1500 2000

Days from first release

0

100000

200000

300000

400000

500000

600000

Pr
od

uc
t C

om
pl

ex
ity

Total workload Product Complexity

•Total workload
•Product complexity

•Product changes
•Cross-module complexity

0
1
2
3
4
5
6
7
8

0 500 1000 1500 2000

Days from first release
A

nt
-la

ye
r 2

 C
om

pl
ex

ity

0
20
40
60
80
100
120
140
160
180

pr

od
uc

t c
ha

n g
es

Complexity Workload (changes only)

9th International DSM Conference 2007- 20

Conclusions

• We introduced a structured approach and simple metrics to explore the
dynamics of software architectures

• The architecture of (software) products evolves through distinct phases
instead of magically appearing

• By looking inside the architecture, we found evidence of the co-
evolution of product and organizational structures

361

