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








Simulations of New Product Development (NPD) processes using their specific contexts can provide 
project managers with decisionsmaking aids. The NPD context, which incorporates knowledge about 
the product, requirements, technology, and other factors, is dynamically evolving during the process. 
The Design Structure Matrix (DSM) could be used to model this product knowledge and reordering 
algorithms could be used for process planning. The plan should be updated as the product knowledge 
evolves; however, the transition from DSMbased plan to process scheme implementation is not 
unique. The process can then be used for simulating process related measures that can guide the 
decision making regarding the preferable implementation strategy. However, such decisions should 
reflect the statistical confidence of the simulation results. In the current work, the properties of 
multiple repetitive simulations are used for supporting decisionmaking based on statistical confidence 
interval derived by evaluating the significance of the difference between the results of applying 
different DSMbased plan implementation options (defined as business rules). The same approach is 
applicable to similar decisionmaking related to processes in general. 

eords e Product Deelopment (PD), Design Structure Matrix (DSM), Product Design, 
Simulation, Business rules, Statistics 

 
Product development processes (PDP), and primarily New Product Development (NPD) processes are 
unique and highly complex [1]; involve multiple disciplines contributing to the development of 
complex multidisciplinary products (e.g., machatronics); have limited resources, shortened 
development time [2], and increased quality and regulatory demands [3]. They are dynamic, because 
they evolve and change due to various reasons including market, technology, and organizational 
changes. Consequently, the scope of work needed for a new product cannot be define nor could be a
priori planned [4]. Being iterative processes, PDP planning and simulation should cope with iterations, 
which are not modeled well by the commonly used GANTT and PERT charts [4]. In order to simulate 
such processes, where the plan keeps changing to changes in the product knowledge, the recurrent 
plan translation to a process scheme should be explicit [5], and correct [6]. 
The Design Structure Matrix (DSM) [7], is a square matrix utilized to capture product knowledge, 
including activities interdependencies and process iterations (feedback loops). The DSM is further 
used for planning the process. The typical DSM planning is based on DSM reordering algorithms that 
try to minimize the number of iterations. Minimum iterations marks are expected to yield optimal 
processes [7][9]. Ideal sequencing without feedback marks (acyclic process) is unlikely to exist in 
development processes [10]. Feedback marks in an ordered DSM create loop of coupled activities. 
Reordering of coupled activities within a loop requires additional reordering algorithms [6], [11]. 
The common DSM method typically addresses the minimum iteration marks objective, and is 
criticized for not addressing other process measures such as project duration or cost. Taking such 
measures into account may change the decision regarding the appropriate process plan [12][13]. 
Alternately, given the process plan, simulation techniques are required for analyzing process 
objectives, regarding time and cost, or additional process data such as: rework effort [12], risk 
propagation [14], communication time [15], or handling process data variations such as uncertainty 
and learning [16].   
The implementation of a DSM plan into an executable process scheme is not unique [17]. Different 
implementation options, defined as business rules, can apply to different business cases (e.g., the 
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availability of resources or deadline considerations). Simulation results can guide decision making 
towards optimal selection between applicable business rules. Simulations typically utilize random 
generated values for the measures being considered; therefore, appropriate statistical methods are 
required for decisionmaking.  
The article describes the use of parameters in DSMbased simulations, and reviews the use of 
statistical considerations in DSMbased simulations. In the DSM literature, the simulations results are 
used for analyzing the DSMbased planning by comparing mean and standard deviation, but without 
checking the results significance. Moreover, the DSM implementation is assumed unique and 
decisions are not applied to selecting between implementation options. 
The current article describes a different approach. The focus is the choice of the process 
implementation of DSMbased plans (being an additional factor besides choosing between plans). 
Additionally, the statistical approach described utilizes the analysis of the expected value of a 
difference function between simulation results of two potential implementation options. Calculations 
of variance and confidence interval are then used for decisionmaking. The presented approach is 
useful for statistical analysis of simulation results in general.  

 
The scheduling literature addresses the need to satisfy desired project quality requirements such as 
minimum time, resources, or other objective functions [18]. The activity relations regarded may 
include traditional precedence constraints (finishstart) [18], or Generalized Precedence Relations 
(GPR) [19]. The main problems addressed in the scheduling literature are Resourceconstrained 
Project Scheduling Problem (RCPSP), and uncertainty in activities duration (with or without resource 
constraints)[18][21]  
Proactive scheduling that accounts for statistical knowledge of uncertainty focuses on the schedule 
robustness to changes, (e.g., by buffers). Reactive scheduling involves revising the schedule when 
unexpected events occur, typically resources and time variations, but also adding a new activity 
[22][23]. However, the scheduling of iterative activities is typically not considered [21]. 
Iterations could be modeled by DSM, yet the basic DSM model typically does not include the activity 
duration, duration changes due to iteration (learning), and the impact of iterations or rework. 
Therefore, the information presented in DSM is partial and was criticized as insufficient for process 
plan evaluation. The basic algorithms used for process planning are based on minimizing iterations 
(feedback) marks. The expectation of minimum iteration marks to yield optimal processes in terms of 
total time and robustness to activity duration variations [3], [7],[3][24]is an appealing general planning 
heuristic. However, the counter example simulation results presented in [12][13] contradicted that 
basic assumption by demonstrating that shortest process time required more iterations than minimal.  
In [12] process duration and process cost were estimated, using iterations with overlap. Increasing the 
concurrency of the activities increased the number of iteration marks, and the number of iterations. 
Thus, cost has increased, but due to overlapping only part of the activity had to be executed again, and 
the overall duration decreased.  

 

  
(a) minimum iterations (b) minimum time 



The example in [13] demonstrated a case where more feedback links yielded a shorter process. The 
marking indicates the number of repetitions; thus, a reordering with more feedback markings, where 
the span of iterated activities was smaller, has created an overall shorter process time. A simplified 
example that demonstrates the essence of the approach in [13] is depicted in Figure 1. In (a), there is 
one marking that indicates two iterations of the whole process, i.e., each activity is executed three 
times. Assuming equal activities duration X for all activities we get an overall process time of 
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T=12*X. A reordering of the process is presented in (b). The first activity D executes, then C, then due 
to iteration D and C are executed again, then B executes, iteration of B and C, then A, and finally 
iteration of B and A. Overall, D and A have executed twice; B and C have executed three times; and 
the total process time is T=10*X . 
It should be noted that the minimum iteration marks concept was developed for a binary DSM, where 
all marks are equal, while the markings in the above examples have values (iteration probability values 
in the first case, and number of iterations in the latter case). In such cases, the rule of thumb of 
minimum iterations is not enough and simulations are needed to address the process specifications.  


DSMbased simulations are used for DSM reordering, and calculations of process measures (e.g., 
duration). Most DSMbased simulations address duration issues using Monte Carlo sampling for the 
stochastic activities duration. Resource issues were addressed in [25]. Resource scheduling, based on 
DSM plan was applied to assignment of computer resources in real time calculations [26]; and to a 
weekly assignment of project resources in [27]. 
The typical DSMbased planning algorithms do not utilize the diagonal [28]. However, if there is only 
one simulation parameter involved per each activity, the diagonal cells could be used to present it. 
Such presentation was used in [29] for presenting the design effort of an activity. A summary of 
simulation parameters used in DSMbased simulations appears in Table 1. Simulation parameters 
might address activity properties, marked by (A); or relations between activities that are presented by 
additional matrices (M). The various optimization objectives yield broad and diverse range of 
parameters. Moreover, the range expands with the type of parameter changes. Some studies have 
stochastic parameters within a frame of a deterministic process [13], [26], [30]. Other studies have 
deterministic parameters within a changing process, where the process route is probabilistically 
selected [29], [31]; and some studies use both sources of process parameters change. 


Two of the studies in Table 1, are using a DSMbased plan with minimum iteration criterion. Once 

the plan is set, it is assumed that there are no feedback links, and the scheduling problem is solved. 
Coates et al. [26] maximized resource utilization (and minimized time) by resource scheduling 
according to the actual duration of tasks, given the predefined DSMbased plan. In [27], the duration 
and resource availability parameters are used for implementing activity weekly schedule according to 
the plan (considering the information needs, and resources availability). In both cases, simulation 
parameters are not used for further process plan optimization.  
Browning and Eppinger [12] suggested calculating the risk factors for duration and cost, which are the 
integral of the impact of unwanted result, multiplied by the probability of such result (based on 
simulation). The impact is calculated as a square of the difference between unwanted outcome and 
required outcome when overrunning the scheduled due date, or the budget, respectively. Lévárdy and 
Browning [32] used a weighted project risk that includes duration, cost, and technical performance 
risks. The risk is evaluated in each process step and guides choosing the best task to be performed 
next. The simulated parameters in [29], are the DSM links according to decision regarding 
modularization or standardization of a product component. Simulation results are used to calculate the 
best process plans, and the overall results are then used for choosing the components that should be 
standardized or modularized. Minimum process duration is used in [16] [13]. The variance of the 
process duration is additionally considered in [16] and is the objective function in [33].  


Using Monte Carlo simulation, the simulated processes proceed by generating random numbers from 
probability density functions f(x). Parameters of the resulting process may not have a formal 
distribution, but such distribution can be generated by multiple repetitions of the simulation. 
Asmussen and Glynn [34]1 indicated that according to the Law of Large Numbers (LLN), and the 
Central Limit Theorem (CLT), the distribution generated by the simulation converges to the actual 
distribution (that might be unknown, or cannot be expressed by a formula). 
Discrete probability mass distribution of the process time can be generated for evaluating mean and 

                                                      
1 Statistical definitions and equations are described in annex A. 
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standard deviation. In [16], probability mass distribution was used for comparing various model 
assumptions; in [13] for comparing various DSM rearrangement cases; and in [30] for comparing 
fluctuations strength. Browning and Eppinger [12] generated the distributions of cost and duration, 
and then used them to calculate the risk of overrun.  



Source Optimization 
objective 

Simulation parameters Parameter type 

Melo and Clarkson 
(2001) [31] 

Minimum cost / risk Path choice Probabilistic path choice  

Browning and 
Eppinger (2002) [12] 

Minimum risk factor 
of duration and cost 

Duration (A)  Cost (A) 
Learning Curve(A)  
Rework probability (M) 
Rework impact (M) 

Stochastic: Triangular 
distribution of Duration and 
Cost (min, expected, max) 

Coates et al. (2003) 
[26] 

Maximum Resource 
utilization 

Actual Duration (A);  
Resource availability 

Stochastic duration 

Cho and Eppinger 
(2005) [16] 

Minimum mean and 
variance of time 

Duration (A) 
Learning curve (A) 
Overlap amount (M) 
Overlap impact (M) 
Rework probability (M) 
Rework impact (M) 

Stochastic: Triangular 
distribution of Duration (min, 
expected, max) 
Learning curve (initial, 
%reduction, minimum) 

Huberman and 
Wilkinson (2005) [30] 

Minimum instability 
due to fluctuations 

Work transformation 
fluctuations 

Stochastic fluctuations 

Lévárdy and Browning 
(2005) [32]  

Minimum project 
risk 

Duration (A) 
Cost (A) 
Performance (A) 

All parameters are 
stochastically generated  

Sered and Reich 
(2006)[29] 

Minimum design 
effort 

Effort (A) 
DSM links values (M) 

Link values per decision 
(standardization/ 
modularization) 
Probabilistic path choice 

Abdelsalam and Bao 
(2006)[13] 

Minimum duration  Duration (A) Stochastic duration 

Yassine (2006) [33] Minimum 
duration/cost 
variability 

Duration (A) 
Cost (A) 
Task Volatility (M) 

Stochastic: Triangular 
distribution of Duration (min, 
expected, max)  

 
One of the issues that need to be addressed is the number of simulations required for the result to 
converge. In many cases, a large number (assumed to be large enough) is taken: 800 in [13], 1000 in 
[16], and 10000 in [30][30]. Asmussen and Glynn [34] describe a typical approach of estimating the 
required number by a small size batch of simulations. Browning and Eppinger [12] defined criteria for 
estimating convergence of the distribution by running batches until the relative mean and deviation of 
the additional batch is below a threshold. However, such relative threshold has no statistical meaning. 
Given the simulation results, a decisionmaking procedure should choose the best results according to 
the criterion. Since the results are distributed, statistical measures should be used to support the 
decisions, i.e., to check if the results are statistically significant. However, the DSMbased studies 
reviewed do not address that requirement, and typically just compare mean and standard deviations 
without checking their significance. 
The expected value of a large number of simulation results has the properties of a normal distribution. 
If we split the simulation runs to K sections of size M, the expected values taken from these sections 
have a tdistribution. Furthermore, a function over the expected value of simulation parameters has a 
normal distribution; and function estimations over expected values taken from several sections have a 
tdistribution. These properties are used [34] for estimating variance and confidence interval of the 
function[34]. 
In the current work, the properties of multiple repetitive simulations are used for supporting decision
making by statistically evaluating hypothesis regarding the differences between the results of applying 
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different implementations of the DSM plan defined as business rules.   




Business Rules indicate different business cases, and may indicate different strategies. Choosing 
the appropriate strategy might be done by using rules of thumb; e.g., if there are enough resources 
make the activities as much as parallel to reduce overall time. However, in the case of iterative 
processes, the “best” strategy may not be very clear.  
Two business cases are depicted in Figure 2. The first case is a serial performance of coupled activities 
(i.e., one activity at a time), Figure 2(a); the second example is performing the activities as a Design 
block (DB) all activities start in parallel and complete together, in a case of iteration all activities are 
performed again. The DB has a selfiteration probability p=0.36, according to Equation 1 [35]. 

Pd =  Π(Pi) (1) 

Where Pd is the combined probability cell of a DB, and Pi are the values of the merged probability 
cells. The probability cells, which are on forward direction (sub diagonal) to (from) design activities 
within the DB are all merged to the probability of forward link to (from) the merged DB. The 
probabilities within the DB are merged to the selfiteration probability of the DB. 
The duration of the DB is defined as the maximal duration of its activities. The duration assigned to 
activity X, is defined as D(X). The activity durations are: D(A)=1; D(B)=2; D(C)=3; D(D)=4. The 
duration of the DB D(BC)=max(D(B),D(C))=3.  

 

 
 

(a) Serialized process (b) Design block (parallel) 


The distribution of the overall process duration (for 100 runs) is depicted in Figure 3, indicating 
duration results of the serialized process (P1) and process with DB (P2). The X axis is the overall 
process duration; the Y axis is the number (and %) of runs with the indicated duration. The 
distribution has discrete values and a decreasing shape (due to decreasing probability of iterations). It 
is apparent that the distribution is right (positive) skewed, and not a normal distribution.      
In order to analyze the results, several decision statistic parameters were compared: average duration 
[16], median (not mentioned in DSM literature), and paired comparison [36].  
The results for average and standard deviation of averages, and average and standard deviation of 
medians are depicted in Table 2Table . Results are presented for a range of values for the parameters: 
probability P(BC); probability of iteration probability P(CB); duration D(B) and D(C). The appropriate 
parameters for the parallel process (DB) are calculated as in the above example. 
The results are averaged of 10,000 runtime simulations. The average, median, and their respective 
standard deviations were calculated from 100 averages (medians) of 100 runs, for each set of 
parameters.  
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P1 – Serialized 

 
 

P2 – Design 
block 

 


For the range of parameters checked, the decisions based on simple comparison of the different 
statistical parameters (average, median, differences) resembled, but were not similar. The differences 
of average and median were not statistically significant. The decisions, according to each of the 
statistical measures are marked by colors: green indicates that process P1 was preferred, and pink 
indicates preference of the DB P2 process. Having enough samples should finally create a normal 
curve of the averages, allowing comparing averages with statistical significance. 







    

# 
P 

(BC) 
P 

(CB) D(B) D(C ) 

Self 
P 

(BC) 
D 

(BC) 

Avg
avg 
(P1) 

Std – 
avg 
(P1) 

Avg – 
avg 
(P2) 

Std 
avg 
(P2) 

Avg
med 
(P1) 

Std –
med 
(P1) 

Avg
med 
(P2) 

Std –
med 
(P2) 

1 0.6 0.6 1 2 0.84 2 12.39 0.55 17.40 0.97 10.91 0.56 14.10 1.09 
2 0.6 0.6 1 5 0.84 5 20.10 1.14 35.36 2.83 16.82 1.11 27.70 3.21 
3 0.6 0.6 4 5 0.84 5 27.49 1.82 35.91 2.81 22.68 1.95 27.60 3.31 
4 0.4 0.4 1 2 0.64 2 9.99 0.31 10.56 0.44 8.10 0.53 9.07 0.32 
5 0.4 0.4 1 5 0.64 5 14.96 0.61 18.93 1.21 11.12 0.84 15.32 1.16 
6 0.4 0.4 4 5 0.64 5 20.05 0.89 19.06 1.05 14.05 0.45 15.12 0.74 
7 0.2 0.2 1 2 0.36 2 8.74 0.16 8.12 0.18 8.0 0.0 7.0 0.0 
8 0.2 0.2 1 5 0.36 5 12.52 0.31 12.79 0.45 11.0 0.0 10.0 0.0 
9 0.2 0.2 4 5 0.19 5 16.15 0.51 12.71 0.45 14.0 0.0 10.0 0.0 

 
Paired comparison [36] is a count of how many times the duration of process P1 (serialized) was 
longer than the duration of process P2, D(P1)>D(P2). Generation of such result is done by running the 
process twice, once with serialized parameters and once with DB parameters and comparing the 
durations. The direct counting of pairwise comparison of simulation results are presented in the 
“paired” column of Table 3. The first process is preferred when its duration was longer in less than 
50% of the cases. This measure had selfsimilarity in various ranges, i.e., it had relatively the same 
results for 1000 cases and 10,000 cases. A decisionmaking criterion based on these results indicates 
that when the percentage of D(P1)>D(P2) is less then 50%, then P1 (serial) is preferred, otherwise P2 
is preferred. This method gives similar results to the two previous methods. 
The decisionmaking approach presented in this article is applying the concepts of Law of Large 
Numbers (LLN) and Central Limit Theorem (CTL) in statistics [34]. Instead of comparing "paired" 
result we generate a difference function ((P1)(P2)), and compute the difference function 
distribution.  
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In order to estimate the required number of simulation runs we made 100 runs for each set of 
parameters. For the serial process (case A), the estimates variance is sA

2=9.17, thus for confidence 
α=5%, KA> sA

2*1.96/0.05=704.7. In the same manner, we get for the DB (case B), sB
2=20.09, 

KB>1543.6. Using the results of 10000 simulations is more than enough. 


 


The difference function distribution for the example in Figure 3, is depicted in Figure 4. As expected, 
the difference of the basic process (i.e., no iterations) is the most common outcome (108=2). 
The results of performing difference calculation statistics for 10000 runs and 1000 runs are presented 
in Table 3. A batch of 10000 runs is very large compared to the required number (according to the 
initial run of 100 cases) and a batch of 1000 runs is in the order of the required number. The 
calculations were made for α=5%. Under the assumption of no difference, the interval 
is 1 / 2 1 / 2[ ]Z s R Z s Rα α− −− ⋅ ⋅  (equation A.6), where s is the standard deviation calculated 
using equation A.5, and 1 / 2Z α− is the normal distribution percentile (Z=1.96 for α=5%).  
If the average result is out the interval, we can decide that the total time of the serial process (P1) is 
significantly larger (smaller) than the parallel process (P2). Since the interval is symmetric, only the 
upper bound of the confidence interval is presented. 



      

 
% T(P1) 
>T(P2) Avg Std 

Confidence 
Interval  Decision Avg Std 

Confidence 
Interval  Decision 

1 35.08 5.04 12.52 0.76 T(P1)< T(P2) 5.02 12.48 0.24 T(P1)< T(P2) 

2 32.63 


15.79 30.03 1.87 T(P1)< T(P2) 15.86 29.99 0.59 T(P1)< T(P2) 
3 41.62 8.47 32.76 2.02 T(P1)< T(P2) 8.42 32.72 0.64 T(P1)< T(P2) 
4 49.43 0.55 5.43 0.36 T(P1)< T(P2) 0.56 5.41 0.11 T(P1)< T(P2) 
5 48,95 3.91 12.91 0.80 T(P1)< T(P2) 3.96 12.85 0.25 T(P1)< T(P2) 
6 54.13 0.98 14.97 1.01 T(P1)~ T(P2) 0.98 14.89 0.32 T(P1)> T(P2) 
7 68.79 0.62 2.54 0.15 T(P1)> T(P2) 0.61 2.54 0.05 T(P1)> T(P2) 
8 69.33 0.26 5.79 0.36 T(P1)~ T(P2) 0.26 5.76 0.11 T(P1)< T(P2) 
9 70.72 3.43 6.72 0.41 T(P1)> T(P2) 3.44 6.68 0.13 T(P1)> T(P2) 
 

Comparing the results in Table 3 with the results of Table 2, it was found that the decisions based on 
large sample (R=10000) were the same as the decisions based on averages. The difference function 
distribution converges to the distribution of the averages. Therefore, in the case of very large sample, 
such alignment of the results is expected.  
The smaller sample (R=1000) was less decisive and the decisionmaing result indicated insignificant 
difference between different process parameters, i.e., a “don't care” decision. These “don't care” cases 
were aligned with the cased where using average, median, and paired results yielded different 
decisions. The indifference zone resulting from using confidence intervals in the smaller (but big 
enough) sample provides an important indication to decisionmaers regarding preferred decision. 
While additional simulations could provide decisive statistical conclusions, in reality, we have a single 
process case for which a decision is sought. Therefore, if for a small and sufficient sample the result is 
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inconclusive, so it would be for the single case.  


Unlike administrative processes or manufacturing processes where the order of activities can be 
logically extracted, the design activities modeled by the DSM have no predefined order. Furthermore, 
the product knowledge used for ordering keeps changing during the process. Consequently, the need 
arises to make choices between different possible process plans and process implementations. This 
article presented a statistical hypothesis testing method for aiding decisionmakers in making such 
choices. The method applies not only to DSMbased planning but to other planning methods in which 
process simulations must be performed to calculate process measures used for decisionmaking. 
The main conclusion that can be obtained from the results is that no business rule is better then others 
for all situations. Simulation of various parameters revealed that different process settings yielded 
different preferences (in regards to choosing the most applicable business rules). In iterative and 
continuously changing processes, general rules of thumb cannot support decisionmaking, and 
therefore simulationbased tools are required for supporting decisionmaking for the specific case 
context. The implementation of statistical analysis for the case of dynamically evolving process is 
presented in [38]; it demonstrates the significance of statistical analysis of simulation results for 
guiding the choice of process implementation, where rules of thumb cannot provide such guidance.   
By utilizing such process simulations and statistical analysis, practitioners of process management 
(e.g., product managers of new products) can leverage existing and newly discovered knowledge for 
better planning and better reaction to changes that are inherent to NPD processes. 
 
 
 


The following describes the statistical formulation in Asmussen and Glynn [34], for analyzing 

stochastic simulation results. 


Probability cumulative distribution P of a probability density function f(x) is defined 

by ( ) ( )
X

P x X f x dx
−∞

< = ∫ .  

In the discrete case, we define the discrete distribution P of a probability mass function p(x) by 
( ) ( )

i

i
x X

P x X p x
<

< = ∑ . 


(i) A Markov Chain is a process {Xn} with finite or countable state space, where the next state 

depends only on the previous state. Examples: a process defined by the transition probabilities 
pij=P(Xn+1=j | Xn=i), i.e., pij is the probability to move from state i to state j; as the serial 
process in [29], using probability DSM. Autoregressive process Xn+1= aXn+εn, with εn being 
an independent identically distributed variable, is another example. The Markov chain is time 
independent (Gilks et al.) [37].  

(ii) A Markov process is time dependent, with finite or countable state space. For example, the time 
of making the transition is exponential with an intensity matrix Λ=λij; and the process holding 
time at state i is exponential with rate =exp(λij), and the next state j is chosen with 
probability λij/ λii. 

The main property of simulation process is the ability to generate large number of examples (i.e., as 
large as required given processing availability). This ability is used according to the Law of Large 
Numbers (LLN). For a stochastic random variable Wn, and the function f(Wn); if for n→∞ the steady 
state W∞< ∞ (i.e., W∞ is a random variable with a limited distribution), then we can calculate the 
expected value of the function for  →∞, using Equation B.1. We get an asymptotic convergence to 
the expected value E[f(W∞)] for the random variable W∞. 
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1

0

1 ( ) [ ( )]


n
n

f W E f W


−

∞
=

→∑ ,  →∞ 
(A.1) 

The expected value z= E[Z] , where z is not available analytically, but Z can be simulated. Using the 
Monte Carlo method, we simulate R replicas Z1…ZR of Z, and estimate the expected value z by the 
statistic zR 

1

1 R

R r
r

z Z
R =

= ∑  
(A.2) 

Assuming the variance σ2=Var[Z]<∞, the Central Limit Theorem (CLT) states that the distribution 
converges to normal distribution, as R→∞.  

2( ) (0, )D
RR z z  σ− → , R→∞ 

(A.3) 

Where D→  indicates distribution convergence.  
The result can be interpreted as   

D

R
Vz z

R
σ≈ +  

(A.4) 

Where 
D
≈ is interpreted as “has the same distribution as", and V has a standard normal distribution 

V(0,1); i.e., zR is distributed as z plus an error. The error for large R is approximately normally 
distributed, and the approximation has a slow convergence rate R . 
In practice, σ2 is unknown, and should be estimated. The estimate is the sample variance s2 defined by 

2 2 2 2

1 1

1 1( )
1 1

R Rdef

r R r R
r r

s Z z Z R z
R R= =

= − = −
− −∑ ∑  

(A.5) 

The use of (R1) follows the standard statistical tradition for making this estimate unbiased, though for 
large R the difference is minor. 
Using the CLT we can define the confidence interval Iα for z. Using the normal distribution 
cumulative function Φ(Zα)=P(Z<Zα)=α  

1 / 2
R

Z sI z
R

α
α

−= ±  
(A.6) 

i.e., z∈ Iα with confidence level 1α. For the typical choice α=5%, the corresponding interval is 
1.96 /Rz s R± . 

For setting a required accuracy, we can make a two stages procedure. First stage will be a small 
simulation (e.g., R=50) for estimating the variance s2, and estimating R accordingly; then simulating R 
occurrences.  
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