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1. Introduction 
Determination of the actual carrying capacity of the rolling contact in low speed axial bearings with 
the established standardised criteria did not give satisfactory results. An exploitation of large axial 
bearings also includes some load peaks, which cause permanent deformation of rolling contact. The 
plastic strain of the base material under the hardened rolling layer starts to grow. The consequence 
may be micro cracks on the edge of the hardened layer as well as pealing-off of the hardened layer. 
Because of that we have used a constitutive damage model for determining subsurface strain stress 
relationship. The model includes isotropic and kinematic hardening or softening and growth of 
damage with growth of oscillation. We have integrated the damage model into a numerical 
computation with a finite element model where the simulation of the contact of the raceway and the 
rolling element under a cyclic load has been done. The comparison of experimental and numerical 
results confirmed the suitability of the established model for the determination of the actual carrying 
capacity of the rolling contact in low speed axial bearings. 

2. Modeling of cyclic plasticity and damage 
The existence of microscopic voids or cracks the size of a crystal grain is referred to as material 
damage. The state of damage in material D is theoretically determined by the overall influence of the 
size and the configuration of microcracks and microvoids. The actual macroscopic stress within the 
damaged material σ  is determined by assuming (1) that the nominal cross-section A is reduced by the 
size of the damaged area AD [Lemaitre 1990, Lemaitre 1990, Skrzypek 1999]:  
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The material damage concept is built into the constitutive model of small deformations eij which are 
composed of the elastic and the plastic part: 
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where the elastic relationship between stress s ij, strain eij
e, damage D and elastic modulus tensor Lijkl is 

determined by: 
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The rate of plastic strain is derived from the normality rule: 
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where λ&  is the plastic multiplier, derived from the consistency condition 0f =& . The stress potential f 
[Lemaitre 1990] is a function of stress tensor s ij, the components of kinematic (Xij) and isotropic (R) 
hardening and the material damage D. For an isothermal state dT/dt = 0, the rheological model and the 
evolution equation of the stress potential are determined by [Lemaitre 1990 and Lemaitre 1996]: 
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2.1 Kinematic hardening model 
Kinematic hardening is described by the back stress tensor Xij, which determines the centre of the yield 
surface in stress space. To determine the values of each of the three tensor components, the evolution 
equations proposed by [Armstrong and Frederick 1966], and [Chaboche 1988] have been used. The 
boundary value of hardening is determined by the dynamic hardening coefficient X8

(n), whilst the 
value of the plastic extension, at which the respective components Xij

(n) reach their boundary value, is 
defined by the kinematic hardening level ?(n). The influence of the reduction rate of the mean stress 
value is controlled by the Ohno-Wang material parameters mn [Ohno 1993]. 
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where the effective value of the stress space centre tensor is 
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2.2 The isotropic model of hardening/softening 
The material is subject to cyclic hardening or softening if the yield surface increases or decreases 
during a cycle loading process. The size of a yield surface is described by scalars R and k. R represents 
the variable which describes isotropic hardening or softening of the material, while k represents the 
size of the elastic area. The initial values for the size of the yield surface are k = σy and R = 0, where s y 
represents the yield stress. The evolution equation for isotropic hardening or softening R has the 
following form [Lemaitre 1990 and Lemaitre 1996] 

( )R b R R λ∞= − &&  , (9) 

where b represents the material parameter, which determines the level of isotropic hardening or 
softening, while the parameter R8  defines the boundary of isotropic cyclic hardening or softening. The 
limit value for cyclic hardening or increased yield surface is R8  > 0 and R8  < 0 for cyclic softening or 
decreased yield surface. 
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2.3 Continuum damage mechanics 
Irreversible damage growth can be described by the evolution equation (10) [Lemaitre 1996, 
Chaboche 1988] which considers proportional influence of the effective plastic strain on the change in 
the damage. The evolution equation, which describes the damage has the following form: 
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The initial damage threshold pD is the boundary and is determined by the accumulated plastic 
deformation p: 
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3. Computer implementation 
The material model has been derived and coded by using hybrid system for multi-language and multi-
environment generation of numerical codes. The system consists of two major components: the 
Mathematica package AceGen that is used for the automatic derivation of formulae and code 
generation [Korelc 1997], and the Mathematica Computational Templates package with the 
prearranged modules for the creation of the finite element codes. The Computational Templates 
package enables the generation of multi-language and multi-environment finite element code from the 
same abstract symbolic description. The simulation development process can be divided into three 
characteristic steps (see Figure 1).  

Symbolic system

� generation of
numerical codes

� multi-language
� multi-environment

Formulations

� constutive models
� element formulation
� response functionals

Debugging level

� element code in symbolic
language

� MDriver environment
� basic tests

Material identification

� element code in C language
� CDriver environment
� uniaxial simulations
� curve fitting

Industrial simulations

� element code in FORTRAN
� ELFENenvironment
� large scale simulations

 

Figure 1. Outline of the code development concept 

The basic tests are performed on a single finite element or on a small patch of elements by using a 
general symbolic-numeric environment Mathematica and the element code written in the symbolic 
language of Mathematica. For the simulation of uniaxial experiments and identification of material 
parameters, efficiency and flexibility is needed at the same time. For this purpose the element code 
written in C language is linked with the symbolic-numeric environment Mathematica. For large-scale 
industrial cases good mesh generation and an efficient solver are essential, so in the third step, the 
FORTRAN code was produced and incorporated into commercial finite element code ELFEN. 
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4. Low cycle carrying capacity for large bearings raceway  

4.1 Determining of material parameters 
For an established numerical material model we have determined the material parameters of a bearing 
ring's low alloy steel 42 CrMo 4 with a help of various experimental low cycle tests [Kunc 2001]. 
Figure 2. shows the comparison of the maximum and the minimum amplitude peaks and the 
comparison of the hysteresis loops relation to the number of load cycles, obtained from the 
measurements and the chosen numerical model. All the required parameters of kinematic hardening, 
isotropic softening and damage growth, which influence the elasto-plastic material response of the 
42 CrMo 4 low alloy steel can be accurately determined from as few as 10 experiments ,which proves 
that simulation of the material response to low-cycle loading resulting in destruction is very reliable 
(Figure 3 and Figure 4). 
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Figure 2. A comparison between measurement and numerical calculation for the tempered steel 
42 CrMo 4 with hardness 462 HV. A non-symmetrical load case at a constant extension of ? e = 

1.4 % and a mean value of emean = 0.5 % 
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Figure 3. A comparison of numerical and 
experimental plastic strain ? ep 

Figure 4. Numerical damage growth up to 
experimentally determined number of cycles Nf 

4.2 Contact of the raceway and rolling element 
The computational model has been applied to a test case related to large rolling bearings. Bearing rings 
are made of normalized steel 42 CrMo 4 with a hardness of 205 HV. The rolling surface was inductive 
hardened to the hardness of 630 HV and the depth of 0.6 mm. Different load cycle compression forces 
have been evaluated by the finite element simulation. Figure 5 shows the damage distribution in the 
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raceway after 100 load cycles and the material damage value through raceway depth at different load 
cycles where we can see the damage growth as a function of the number of loading cycles. The 
softening of the core material of the raceway in the process of repeated contact force is shown in 
Figure 6, which shows the stress and strain path as a function of load cycles. Figure 7 shows the stress-
strain hysteresis loops as a function of the number of cycles at the most critical location in the 
raceway. The most critical location is the one at the location of the maximum damage value that 
occurs in the core material at the limit with the hardened layer. 
The verification of the established numerical material model for use in determining the actual carrying 
capacity of the rolling contact in low speed axial bearings is made with the good comparison of 
experimental and numerical results of total and permanent raceway deformation growth in relation to 
the number of load cycles (Figure 8). 
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Figure 5. Comparison between measurement and numerical calculation for the tempered steel 
42 CrMo 4 with a hardness of 462 HV. A non-symmetrical load case at a constant extension of 

? e = 1.4 % and a mean value of emean = 0.5 % 
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Figure 8. Comparison of experimental and numerical results of total and permanent raceway 
deformation growth in relation to the number of load cycles 

5. Conclusions 
A numerical model for analysis of low cycle carrying capacity for large bearings raceway under cyclic 
loading has been presented. The model combines isotropic and kinematic hardening or softening with 
continuum damage mechanics. Preliminary analyses show that stress-strain situation in critical regions 
of raceway can change significantly with increasing number of forming cycles. This suggests that 
estimations of carrying capacity should be based on the analysis of cyclic plasticity and damage, 
which have a considerable effect on the service life and cause redistribution of stress-strain fields in 
the vicinity of critical regions. 
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