

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED11
15 - 18 AUGUST 2011, TECHNICAL UNIVERSITY OF DENMARK

INTEGRATED PRODUCT AND PRODUCTION MODEL
– ISSUES ON COMPLETENESS, CONSISTENCY AND
COMPATIBILITY
Stellan Gedell1, Anders Claesson2 and Hans Johannesson
(1) Chalmers University of Technology, Sweden (2) Saab Automobile AB, Sweden

1

ABSTRACT
Product development of complex products and their corresponding production systems continue to
provide challenges in industry as well as interesting and challenging research questions. Recent
research in the area has aimed at increased understanding and development of an integrated product
and production system-modeling framework supporting cross-functional collaboration and
concurrency. In this context, a well-known challenge in industry is the problem of how to ensure
correct and complete sets of parts for manufacturing of different product variants. In striving towards
integrated modeling capabilities this is one of several fundamental problems to be addressed. Thus,
this problem has been in focus for the research work reported on in this paper. The work includes a
framing of the concepts of completeness, consistency, and compatibility. Based on this framing a case
study is conducted exploring the possibilities and implications involved in using the modeling
framework to include supporting functionality. The case study is ongoing and preliminary findings are
included in this paper.

Keywords: product development, product model, systems theory

1 INTRODUCTION
Systems engineering is an important field of research. It aims at a more systematic development
process, characterized by a method- and model-based cross-functional collaboration and concurrency,
supported by information management tools. Information management tools are an important pre-
requisite to enable the required information sharing as well as provide for necessary traceability.
Furthermore, explicit information carried in formal information management tools are a fundamental
pre-requisite and starting point for knowledge capture and reuse. The dependencies identified between
product and production implies a need to strive for cross-functional collaboration, which highlights the
need for information models and tools capable of describing the product and the production systems
using one integrated model.
Based on a systems theory approach, recent research has resulted in an integrated modeling framework
supporting collaborative design of product and production systems [1]. Included in that work
dependencies and interactions within product and production systems has been elaborated and an
integrated product and production systems model is presented. However, a deceitfully simple question
to request the model to produce a complete list of parts required to manufacture a specific product
variant reveals the need to provide additional thoughts on the concept of completeness.
The work presented here is a first step towards increased understanding of the issues involved and
their implications on some additionally needed capabilities in the modeling framework. In other
words, the scope of the paper is mainly to problematize on completeness, consistency and
compatibility. The ongoing case study serves to contribute empirical data to the discussion of the
problem and as a source of increased understanding of the validity of proposed solution approaches as
well as potential hidden challenges and pitfalls. First, a short description of the modeling framework in
[1] is presented. Then, the issues of completeness, consistency, and compatibility are presented and
elaborated. An ongoing exploratory case study aiming to enhance the modeling framework is
presented. Finally, some conclusions and reflections are provided.

2 INTEGRATED PRODUCT AND PRODUCTION MODEL
Some of the important aspects of the modeling framework [1] used as a starting point for the work
presented in this paper are outlined below for convenience and in order to highlight some important
features and aspects of the framework. This is done through describing three important cornerstones.
The first cornerstone illustrates some important fundamental aspects of the framework. The
framework was originally proposed by Claesson [2], and further enhanced by Gedell [3], aiming to
support structured development of complex, variant rich and platform-based design by means of re-
use and information sharing. It has some important advantages to point out:
• It can represent any system of interest. This capability can be used to represent any abstract

system while not being limited to, for example, physical parts.
• Multiple similar designs can be represented by one parameterized model, a model with a design

bandwidth defined by its parameters. This can provide an overview and definition of the product
range the design is capable of supporting, which is an important aspect in platform design. With
reduced duplication of work the workload is minimized. Quality is improved since the possibility
for mistakes is reduced as a consequence of a reduced number of models to maintain.

• A system is described by means of design solutions. The amount of details, in other words, the
granularity of the description depends of the purpose of the model. Consequently, there is no
right amount of details, it depends of what the model is intended to support. The level of detail is
to some extent guided by the need to provide sufficient description of the performances to be
expected from a particular design solution. Furthermore, the design solution – in its context – will
collaborate with other design solutions resulting in emergent properties. Comprehensive system
models include these emergent properties as well as how these arise from the collaborating
subsystems.

• A design rationale model is used to explain why a design solution is chosen, in terms of what set
of requirements that the design has to meet. The design rationale model consists of design
solutions, functional requirements, constraints and relation objects [3]. The relation objects
carries the information why a design solution is considered a good choice to meet the
requirements. When design rationale [4] is included within the model its usability in terms of
modification and re-use in highly improved. Those that are interested in the design can easier
understand why a design solution is chosen when the reasoning behind that choice is presented
together with the functional requirements and constraints that it fulfils.

• Extensive designs can inadvisable be model as monolithic units. Though a design is not the sum
of its parts, as will be discussed in the next chapter, it is practical to break complex phenomena
into parts. For example, the parts may easier be identified as usable in multiple designs with the
advantage of economy by scale as one driver. Another example is when multiple stakeholders,
organizations and companies want to have a clear division of responsibility. Extensive designs
can be described as systems composed of sub-systems, which – in their turn – are composed of
sub-systems in a recursive fashion. Composition includes how a system presents its
configurability to potential super-systems as well as how a system selects and configures sub-
system.

The second cornerstone in the integrated product and production model [1] are the interactions
between the product model and the production model. The framework is based on systems theory and
Hitchins [5] gives some valuable input to the importance and effects of interacting in the statement:

 “A system is an open set of complementary, interacting parts with properties, capabilities, and
behaviors emerging both from the parts and from their interactions”.

There are several important aspects that can be extracted from this sentence.
• A systems behavior is a consequence of the system itself and its interactions with other systems

as well as its own internal structure and internal interactions. In other words, it is not meaningful,
nor possible to describe and understand the behavior of a system without considering its context
as well as its internals.

• Thus, the behavior of a system is not simply the sum of the behavior of its parts, as opposed to
reductionism. Decomposing, without a mechanism to model emerging behavioral characteristics
of the system is a simplification and will consequently have shortcoming.

• Finally, even though not explicitly mentioned in the citation above, systems behave differently in

different stages in their lifecycles (Figure 1). This can be illustrated if we consider a system
model of a car. When a car is being produced in a plant it can be seen as two systems (the car and
the plant) that interact with each other. The car is in its manufacturing lifecycle, whereas the plant
is in its use lifecycle phase. Focusing on the system model of the car, this model of the car has
previously been in its definition (or development) stage of its lifecycle. Then, after being in its
manufacturing lifecycle stage it will be entering its supply and use cycles of its life.

The temporal duration of super-systems formed by interacting systems varies. Super-systems can be
formed with the intention to have a relatively long duration like the use lifecycle phase of consumer
products. A super-system, which is formed to describe the production lifecycle phase of a product, will
have a short duration. For example, when parts are placed in a fixture, to be positioned before welding,
they together can be seen as a temporary system. Similarly, every interaction that takes place during a
products production phase and the production systems are possible to view as short-lived super-
systems.

Figure 1, Super-systems formed of interacting systems during certain lifecycle phases.

The third cornerstone is the ability to allow multiple overlapping (partial) models. The interacting
design solutions (Figure 2) can for modeling purposes be encapsulated in order to represent interacting
systems for different purposes as indicated by the shaded areas with different colors to the right in the
figure. Nothing restricts a design solution to participate in several different encapsulations.

Figure 2, Two alternative elaborations and encapsulations [5].

Together these three cornerstones provide a foundation for the integrated product and production
model [1]. How products and production processes relates to each other is facilitated by viewing the
production processes as something going on within a production system, and similarly viewing the
product (system) and production system as a temporarily formed super-system, i.e. a system in its own
right.
Figure 3, which is borrowed from [1], is used to illustrate an integrated model. The body-in-white is
composed of the roof panel production system (160) and the roof panel. That exemplifies how systems
originating from different organizational parts of the company (product and production) seamlessly
form an integrated model. The interaction align with pin & hole, describes how the production
system’s (the fixture’s) positioning pin interacts with the product’s (the roof panel’s) positioning hole.
Finally, the body-in-white and the body shop can exemplify a temporary system, as they together
forms a system during the body-in-white’s production phase.

Figure 3. An integrated model representing a subset of a car and a subset of a plant [1].

3 COMPLETE, CONSISTENT AND COMPATIBLE
One of the key drivers behind the originally proposed framework [2] was the understanding of the
product development process as a journey from an incomplete and inconsistent state of affairs towards
a final gate “start of production” (or SOP) when the state of affairs should be characterized by a
complete and consistent model capable of providing the information required to run large volume
series production. Enabling a model to support an incomplete and inconsistent situation is rather easily
achieved, for example, by simply avoiding putting any formal requirements on the model. The
challenge, however, was not to just simply allow for an incomplete and inconsistent model. The
challenge is rather to provide modeling mechanisms that allow the modeler to understand and identify
when the model is incomplete and/or inconsistent in order to provide him opportunities to recover and
correct such a state if it is of importance to do so. From an overall perspective, the speed of a product
development process is equal to the speed of convergence from an incomplete and inconsistent model
to a complete and consistent state.
The term complete can, deceitfully, be perceived as an absolute term, “When everything is there it is
complete”. However, an absolute definition vanishes at a closer look upon the issues involved. For
example, using Google define we find two representative results from a search on complete: (1) having
every necessary (…) part, and (2) with all the necessary parts. Instead of an absolute meaning,
complete depends on a relative or subjective opinion of what is necessary.
Requirements and their solutions generally co-develop during the design activities. We initially focus
on the solution part of a product description in order to provide a starting point for reasoning about
completeness. The manufacturing of a product can be used to illustrate a concrete situation where
completeness may be a problem. When a product is manufactured as an assembly of parts, how do we
know and ensure that exactly the required set of parts are selected and assembled? The required set of
parts required to assemble the product can be said to be complete in the sense that these parts are both
required and sufficient to form the product – they are necessary. Adding or subtracting a part from this
set would make the set either incomplete (one or more parts lacking) or redundant (one or more parts
to many). This may seem as a trivial thing to achieve. However, when producing complex and variant
rich products (like cars) there are a couple of thousand parts required per product and thousands of
product variants possible to produce – each variant requiring a specific set of parts in order to be
complete.
For the reasons mentioned above, the question – What parts constitute a complete set of parts for the
assembly of a product variant? – is by far not trivial and most relevant. The situation described clearly
shows that the answer to the question is that – it depends. It depends on which variant of a product that
is to be produced. Clearly, different product variants will have different sets of parts depending on
which features the product shall have as well as on the set of requirements it must fulfill. For example,
a set of parts, that is complete for a low content product, will most certainly be incomplete for a high
content product. The conclusion drawn from this is that complete is a relative concept that describes if
some fundamental need is met. Our challenge is to explore if, and how, this issue can be handled using
our modeling framework.

Thus, for the modeling framework to be able to make a statement about the completeness of a design,
it is required to include a request, or expectation, of the modeled design. This request or expectation
will establish a statement on what is necessary. The criterion for completeness is met when the
modeled design solutions leaves none of the explicitly stated requests or expectations unanswered. The
modeling framework, therefore, must include modeling mechanisms to formulate and establish these
requests and expectations as well as modeling mechanisms allowing the modeled design solutions to
provide responses to such requests and expectations.
Having provided a base for reasoning on completeness we now turn our interest to the concept of
consistency. In logic, a consistent theory is one that does not contain a contradiction. The lack of
contradiction can be defined in either semantic or syntactic terms. Consistency, in general, is also used
in a slightly different way meaning a harmonious uniformity or agreement among things or parts or
something of a regularly occurring, dependable nature. However, in this context we refer to
consistency in the former meaning that consistency among a set of statements implies that no
contradiction logically follows from these statements.
To include reasoning about consistency in our modeling framework we must examine it to identify
where we are making statements that may lead to a contradiction. First we observe that unless we
provide more than one statement about “the same thing” there is no possibility for a logical
contradiction to arise. An example may be that we define a parameter, let’s say a length of some
design solution. As long as this parameter has no associated value, the model in a way could be said to
be inconsistent, since a value is more or less required. However, it is probably more straightforward to
view this situation as incomplete – we lack a value for a parameter. Then, someone assign this
parameter a value. Now, unless the model contains other statements on this parameter and its value,
the model is consistent and the value assigned to the parameter is simply a statement of fact – a kind of
axiom. This clearly shows that in order to fruitfully discuss whether or not a model is consistent, the
model must include mechanisms to make several different statements about the same entity. When all
of these statements agree, we conclude that the model is consistent. Otherwise, we conclude that we
have an inconsistency in our model. Looking at the model as a tool used to support product
development during early phases on the journey from incomplete and inconsistent towards a more
complete and consistent situation it is of no interest to just eliminate inconsistency, but rather provide
support to identify inconsistencies in order to support understanding of the causes and thereby moving
the sequence of design decision further.
As stated above, the modeling framework must allow that multiple statements can be made on the
same entity (or fact). Another example of this might be allowing different stakeholders to use different
evaluation methods to obtain a performance value. Even though the individually returned performance
values may differ this is not a sufficient ground in itself to conclude that they are inconsistent.
Provided that all these statements (performance values) according to some criterion agree with each
other we still may conclude that the model is consistent. If they to some extent, again according to
some criterion, disagree we may conclude that our model is inconsistent. Consistency as defined in our
context can only be evaluated when there are more the one statement available about an entity, and a
method as well as a criterion to determine whether there is a contradiction among these statements or
not.
Moving the focus to the third issue – compatibility – we first recall that our integrated product and
production-modeling framework is based upon a system oriented modeling approach. The framework
provides several opportunities to represent complex and configurable systems that are defined and
described as collections of collaborating sub-systems. The modeling mechanisms provided to define
and describe these collaborations are primarily through interfaces and interactions. The modeling
mechanism referred to as composition is used to identify which systems to include in such a
collaborative collection. A consequence of collecting a set of systems with an expectation that they
will collaborate is that the corresponding set of interfaces and interactions thereby obtained will – in a
sense – connect and fulfill their expected behavior. Interfaces that in this way have been able to
connect and fulfill their expected behavior can be viewed as compatible, i.e., they are capable of
providing the requested and expected levels of collaboration. However, this is a conclusion that might
not be possible to draw looking on a single interaction only. The reason for this is that we need to
allow observation of emerging properties that we may have modeled on a “higher” system level. Even
though an interface may seem locally ok, it may be the case that the results on important emergent
properties are not as requested or expected. The implication here is that conclusions on compatibility

when viewing a system collection can be successively made starting at an individual interaction
among a couple of interfaces and then successively propagating towards higher system levels ensuring
that compatibility among the collaborating systems are maintained on all system levels. Another
interesting issue regarding compatibility is that if offered capability meets or exceeds requested
capability the request and response are compatible, otherwise offered capability is incompatible with
request.
An important aspect to consider is that the quest for a complete, consistent and compatible model must
not limit the models capability to handle incompleteness, inconsistency and incapability during the
model’s design lifecycle. In the design phase incompleteness and inconsistency must be allowed, for
example due to conflicting design alternatives or stakeholders’ prioritizations. To rigid processes or
tools will hinder design activities and likely create frustration, for example due to reduced
organization efficiency or deviation from prescribed processes and rules. To summarize, it is
necessary for a design model to support incomplete and complete, inconsistent and consistent, and
incompatibility and compatibility.

4 IMPLICATIONS FOR THE INTEGRATED MODEL
The modelling framework as it has evolved to the state described in [1] does not really include any
mechanisms to support the kind of reasoning described above regarding completeness, consistency, or
compatibility. In order to enable our modeling framework to include mechanisms to support issues on
completeness, consistency, and compatibility we must provide some form of automated, or semi-
automated, reasoning support. Formally, automated reasoning is a research area in its own right (e.g.,
see [7]). The objective of automated reasoning is to write computer programs that assist in solving
problems and in answering questions requiring reasoning [8]. In a semi-automated reasoning such a
program is used in an iterative fashion; that is, you can instruct it to draw some conclusions and
present them to you, and then, based on your analysis of the conclusions, it can in the next run execute
your new set of instructions. Alternatively, you can use such a program in a batch mode, that is, you
can assign it an entire reasoning task and await the final result. The intention in our case is to enhance
the modeling framework with some basic capabilities to provide for a first step towards a semi-
automated reasoning with focus on our issues concerning completeness, consistency, and
compatibility. An interesting overview of different forms of automated reasoning is provided in [9].
Reasoning is a process of drawing conclusions from facts. For the reasoning to be sound, these
conclusions must inevitably follow from the facts from which they are drawn. In other words,
reasoning is not concerned with some conclusion that has a good chance of being true when the facts
are true. Indeed, reasoning as used here refers to logical reasoning, not of common-sense reasoning or
probabilistic reasoning. The only conclusions that are acceptable are those that follow logically from
the supplied facts.
This rather strict definition of reasoning is not really what we are aiming for in our ambition to provide
a modeling framework capable of supporting concurrent product and production development. An
engineering solution does not seek to claim that it is logically right – an engineering solution is one
solution – among many potential solutions – that valued in the context of a set of expectations and
requirements is good enough. What makes it so difficult is the vast amount of design parameters
possible to decide upon and the many performances upon which expectations and requirements are
placed. A further complication is that many of the most important performances upon which we place
expectations and requirements are emergent properties on higher system levels and thus very difficult
to attribute to any particular set of design parameters where the design decisions actually are taken.
The consequences of the design decisions emerge from a whole range of design decisions rather than
from any one decision in particular.
The mechanisms available to us within our modeling framework to start our journey towards
providing some form of semi-automated reasoning along the thinking outlined above are primarily our
parameters. In [2] three semantically different kinds of parameters were distinguished: design
parameters, performance parameters, and variant parameters. The understanding of these are that
design parameters are those parameters that a design engineer or a decision maker can influence and
decide upon their values in order to form design solutions in accordance with their intentions.
Performance parameters are additional parameters that provide information about the consequences or
outcomes from the design solutions in terms of observable properties of interest. The understanding of
how parameters depend on other parameters is captured introducing a new modeling element referred

to as a parameter map. Variant parameters are a kind of convenience mechanism that, for example,
enables us to refer to huge sets of parameters with one simple statement of a value of a variant
parameter. Conversely, the value of a variant parameter may be derived from an observation of the
values of a set of other parameters, thereby providing a sort of automated categorization of which
variant we currently are dealing with. With these basic modeling elements in place the first step
towards an ability to provide a simple form of semi-automated reasoning is in place.
Another mechanism we will need to introduce is a possibility to define expressions and/or constraints.
For example, we will need to establish a constraint expressing that a certain performance value must
exceed a required value. Another example might be the performance parameter weight that we would
like to minimize while also requiring it to be below a threshold value. Since we also want to support
multiple opinions and allow for more than one statement on an entity, we furthermore need to provide
explicit mechanisms supporting which statements we are taking into account during an evaluation of a
constraint or expression as well as how we arrive at a certain conclusion. Yet, another issue to provide
for in the modeling framework is how to initiate and trigger evaluations of constraints and expressions
as well as how conclusions and results from parameter mappings are allowed to propagate forming a
chain of successive mappings and conclusions. The steps taken regarding these concerns in the work
reported here only touch upon these subjects in a basic and simple manner. More elaboration on this
particular topic is beyond the scope of this work.

5 AN EXPLORATORY CASE STUDY
The purpose of the exploratory case study is to apply the thoughts on completeness, consistency, and
compatibility outlined above. Further, the aim is to enhance the modeling framework in practice and
examine the capabilities achieved through the enhanced framework. The approach taken in pursue of
this exploration was to apply the framework in an attempt to model a car program (products) and the
production system required to manufacture these products. The intent is to apply the framework and
use it to describe and define current and next generation products and production system(s) as well as
the platform(s) upon which these are based and derived. The study is conducted in collaboration
between academic and industrial partners and based upon accumulated industrial experiences as well
as research results obtained from many years of research in the area. The models created shall include
solution bandwidths, architecture definitions, and definition of the platform(s). The approach is to
define and maintain a complete and consistent holistic model while continually refining, detailing, and
extending the model through elaboration and encapsulation.
As mentioned in the introduction, information management tools are required prerequisites for dealing
with these models. Since the authors are unaware of any existing tool that can be used to capture,
maintain and manage the information model defined in the framework, the study also include the
creation of a prototype tool with enough functionality to work with the modeling aspects in focus of
the study. Creating and using this prototype tool will provide valuable insights in itself and be a
learning platform both in terms of modeling methodology and in terms of usability requirements on a
future and more efficient tool.
From a scientific point of view the expectations on the case study are that it will provide both
empirical validation of the proposed integrated product and production modeling framework and new
insights in new questions for future research. From an industrial point of view the case study will
enable an update on the modeling frameworks state-of-art and subject it to some relevant industrial
issues in order to gain understanding about current modeling capabilities as well as experiences and
knowledge about important issues to develop further in the future.

6 CONDUCTING THE CASE STUDY
The aim of the case study is to examine the capability of the enhanced modeling framework regarding
the defined issues on completeness, consistency and compatibility. In order to achieve this, the model
will have to include both system level aspects such as product variants and performance expectations
and detailed design decision on design parameters and the consequences of these in resulting
performances. Furthermore, it is of interest to include possibility to model both physical and functional
interactions on physical part level as well as emerging performances on higher system levels. A choice
to model the chassis system in a car was made while it provides all the above opportunities and also
includes well-known system level performance expectations (braking distance of a car). A chassis
system of a car also provides many opportunities to model product variation.

Besides the modeling of an example system using the framework, the case study includes creating a
prototype information management tool. There are two main reasons. First, the authors are not aware
of any existing tool with the functionality to host the modeling framework and its required
functionality. Second, the expected extensions to the modeling framework required in order to address
the described issues on completeness, consistency and compatibility are not known in detail as to what
functionalities the modeling framework and the information tool must be capable of providing. The
case study is expected to shed some more light and understanding on these aspects.
Creating an information management tool for the proposed framework is by no means a simple and
straightforward task. The first issue to deal with is that the definition and documentation of the
framework is provided through the description and references provided above. As a consequence, any
missing or ambiguous elements must be given complementary and assumed definitions. The second
issue to deal with is that this work in itself is of an exploratory character having the implication that it
is not entirely known beforehand exactly what has to be included in the information management tool,
nor what functionalities it is expected to be able to provide. Both issues combine to a very ambiguous,
unclear, and incomplete situation and foundation for creating an information tool. Thus, if this tool
were to be created by a third party, the amount of work required to bring clarity to these issues would
be almost overwhelming and require a lot of time and resources to be spent on creating more formal
requirements for this tool. The approach taken in this exploratory study is to define and create the tool
in parallel with the ongoing modeling and conceptual work.
In order for this to be feasible the information tool is conceptually divided into two major areas of
functionality: information capture and information visualization. The work conducted so far has been
to enable information capture of all (or most) modeling entities defined in the modeling framework as
well as extending the framework with some modeling entities discovered to be of vital importance in
order to address the research questions on completeness, consistency, and compatibility.

Figure 4. User interface to capture and define modeling entities.

The prototype information tool is developed using a C#-environment and is initially a single user and
standalone application using simple files for data storage.
The user interface of the tool follows a more or less one-to-one mapping of the information model
defined in the framework. Several sets of tabbed pages (Figure 4) have been used to provide an easy
contextualization for each of the model entities to be defined.

The approach to create a product model including necessary elements to explore completeness,
consistency, and compatibility takes is illustrated by Figure 5. The approach utilizes as a starting
point, those physical parts of the chassis system that are required in order to manufacture a
vehicle, illustrated by rotor and brake pad in the figure. Since the chassis exists in several
different variants several sets of physical parts will be included in the model. The variability is
represented in the figure by parameters, e.g. two rotor diameters. Depending on the product

variant to build, this starting point provides requirements on the model to define how product
variants will utilize different sets of parts. Thus, the model must include several additional model
elements representing higher system levels, exemplified by chassis, until the vehicle system
level, i.e. car, is modeled and described. On vehicle level both performance expectations (e.g.
braking distance in fr:braking) and vehicle variants (e.g. sportiness derived from driving
experience) are added to the model, thereby providing a starting point for examination of
completeness as well as consistency. Starting with adding model elements on the vehicle level
requesting a certain level of performance (in this case exemplified by braking distance) a request
for a performance response has been defined. Until such response is provided the model is
incomplete. In order to resolve this incomplete state the model must include additional elements
capable of providing a connection between part level performances and delivered performance on
vehicle level.

Figure 5. A subset of a car with the evaluation information flow (arrow D, E, F, G, C, H), the

source for a variant parameter (arrow A), and a top-down design approach (arrow B).

Two elements in Figure 5 contribute in evaluating the designs performance relative the requirements,
evaluation in brake selection and performance model (perf.mod.) in brake system. The information
flows from the design solutions to the performance model (arrow D, E and F), to the evaluation (arrow
C and G), and the result from the evaluation (arrow H) to car. Together these arrows form a bottom-up
evaluation.
Attempting to establish this connection from design solutions to the car clearly showed that it is
virtually impossible to form such a performance model by following a physically oriented product
breakdown structure. As a consequence, the model must be capable of managing several overlapping
modeling elements in order to provide for both a response on which parts to use for manufacturing and
for calculation to evaluate achieved performance.

The brake system’s performance model in Figure 5 is elaborated further in Figure 6, as a mean to
model emergent properties. In order to model emergent properties, parameter mappings are utilized in
design solution elements of abstract sub-systems, in this case chassis. This system representation
provides the ability to host performance models that for example map the different angles of the
chassis corners’ (toe in, camber, caster etc.) contributions to performance measures on ride and
handling. These and other similar design parameters contribution to the chassis behavior and
performance requires an abstract dynamic chassis model (Figure 6) to be included.

Performance
Model

FL Wheel corner

Tread contact area

FR Wheel corner

RL Wheel corner

RR Wheel corner

Environment

Steering

Steering wheel

Acceleration

Retardation

Weight distribution

Driver

Figure 6, Illustration of some elements in a dynamic chassis model for Brake System.

Attempting to establish this connection from design solutions to the car clearly showed that it is
virtually impossible to form such a performance model by following a physically oriented product
breakdown structure. As a consequence, the model must be capable of managing several overlapping
modeling elements in order to provide for both a response on which parts to use for manufacturing and
for calculation to evaluate achieved performance.
The modeling elements outlined above constitute the prerequisites for a software agent to evaluate if
necessary sub-systems are included. In other words, the modeling framework includes modeling
mechanisms to formulate and establish requests and expectations as well as modeling mechanisms
allowing the modeled design solutions to provide responses to those requests and expectations.

7 CASE STUDY RESULTS AND CONCLUSIONS
In performing the case study it is evident that deep insights of the design intent as well as the design
itself are required in order to create appropriate descriptions and models. The focus for the case study
was to model the vehicle chassis system and how it contributes to vehicle behavior through the
different parts used. It was, however, an interesting experience for the researcher creating the model to
realize that the task required knowledge way beyond his own, even though the researcher is an
experienced senior engineer with long automotive experience. Even to briefly describe expected
performances on car level and list a number of sub-systems requires deep and extensive knowledge. A
respect for expert knowledge is a lesson to remember. In other words, our conclusion is that the
product model preferably should be created and maintained as close to the source of knowledge as
possible, i.e. by the designers themselves.
Further, concerning expert knowledge, modeling of performance will range from the complete vehicle
down to individual parts. That range is seldom covered by a single person, but of a number of
specialists that together covers the range from details to complete design. This puts even more
emphasis on capabilities for supporting highly dynamic collaboration when using the described
framework.
A strong benefit of creating a tool in parallel with the modeling research lies in the clarity that is
required by the software tool in order to ensure proper capture and functionality for the modeling
elements identified in the research. Furthermore, the requirement to actually capture the modeling
entities using a software tool provides a higher level of clarity also in the approaches taken to the
system modeling as such. In doing so, it becomes almost brutally clear where the modeling framework
is supportive and where it has some weaknesses or missing elements or concepts.
The case study is still ongoing and results presented here are preliminary and based on the work done
so far.

8 REFLECTIONS ON RESULTS AND CONCLUSIONS
In the early framing of the research scope presented a brief literature search was made in order to find
a starting point and baseline. The outcome was rather disappointing and it was difficult to find a set of
appropriate references upon which this research could be founded.
The completeness of a design is not absolute, but depends on the expectations of the design. The
designs completeness can to a limited extent be evaluated against a list of expectations. There is,
however, no known way to ensure whether this list in itself is complete or not. Obviously this is a
recursive problem where it is only possible to state that completeness depends. The consequence is the
need, presented above, to define a criterion of completeness in each and every case.
To illustrate and support the statement that the completeness of a design is not absolute, we can refer
to Roozenburg and Eekels [6]. A design does not have functions (and thereby behavior and
performance) on its own. Rather, a designs behavior (function) depends of the design itself (the four
boxes in the upper left corner in Figure 7) in combination with its mode and condition of use. How a
design is to be used is outside the control of the design itself. Actually the number of possible
combinations of mode and condition of use is an infinite number. Based on this reasoning, the findings
presented must be seen as initial steps in understanding and addressing issues on completeness,
consistency, and compatibility.

Figure 7: Product functioning [6].

A simplistic view and illustration of the problems dealt with above is presented in Figure 8. This
generic feedback-loop shows the causality between expectations and performance responses from the
design. It is our intention to apply the same approach of reasoning to the problems regarding
consistency and compatibility.

Evaluation of
the design.

Requests and
expectations of

the design.

Product description
as result from

synthesis.

Performance
models measuring

behavior of the
design

Figure 8: Conceptual illustration of the involved information blocks when evaluating

completeness, consistency and compatibility.

The approach and findings presented has been found to provide a valuable starting point for further
research on these topics.

ACKNOWLEDGEMENTS
This work was carried out at the Wingquist Laboratory VINN Excellence Centre within the Area of
Advance – Production at Chalmers, supported by the Swedish Governmental Agency for Innovation
Systems (VINNOVA). The support is gratefully acknowledged.

REFERENCES

[1] Gedell, S., Michaelis, M., Johannesson, H., Integrated Model for Co-Development of Products
and Production Systems – A Systems Theory Approach, 2010, (Accepted by Journal of
Concurrent Engineering)

[2] Claesson, A., A Configurable Component Framework Supporting Platform-Based Product
Development, 2006 (Doctoral Thesis, Division of Product and Production Development,
Chalmers University of Technology, Göteborg, Sweden)

[3] Gedell, S., Platform-Based Design - Design Rational Aspects within the Configurable
Component Concept, 2009 (Licentiate Thesis, Division of Product and Production Development,
Chalmers University of Technology, Göteborg, Sweden)

[4] Andersson, F., The Dynamics of Requirements and Product Concept Management, 2003
(Doctoral Thesis, Division of Product and Production Development, Chalmers University of
Technology, Göteborg, Sweden)

[5] Hitchins, D. K., Advanced Systems – Thinking, Engineering, and Management, 2003 (Norwood,
MA: Artech House)

[6] Roozenburg, N. F. and Eekels, M. J., Product Design: Fundamentals and Methods, 1995
(Chichester: Wiley)

[7] Portoraro, F., Automated Reasoning, 2010 Winter Edition (The Stanford Encyclopedia of
Philosophy

[8] Wos, L., Overbeek, R. Lusk, E., Boyle, J., Automated reasoning: Introduction and Applications,
1992 (McGraw Hill)

, Zalta, E. N. (ed.)),
http://plato.stanford.edu/archives/win2010/entries/reasoning-automated/

[9] Bonacina, M. P. and Martelli, A., Automated reasoning, 2006 (Intelligenza Artificiale,
III(1-2):14-20, Marzo/Giugno)

Contact: Stellan Gedell
Chalmers University of Technology
Product and Production Development
412 96 Göteborg
Sweden
Tel: Int +46 (0)736 278525
Email: stellan.gedell@chalmers.se
URL:http://www.chalmers.se/ppd/SV/organisation/avdelningar/produktutveckling/personal/doktorander
/gedell-stellan

Stellan Gedell is currently a PhD student at the Department of Product and Production Development
at Chalmers University of Technology in Gothenburg, Sweden. He started his PhD studies at
Chalmers University of Technology in 2008 focusing on integrated platform-based product
development.

mailto:stellan.gedell@chalmers.se�

