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With the advent of high-speed computers more and more theoretical research in manufacturing area is
transferred to technology that enable complex CAD modeling and solution of the nonlinear, large deformation
finite element problems. All OEMs require their suppliers to use the simulation tools before prototypes are
made on the shop-floor. Virtual simulations help produce an array of acceptable designs some of which give
information on identifying and setting the optimum values of the forming process parameters. This paper
discusses the application of rotatable orthogonal array (OA) and 5-axes response surface methodology (RSM)
to identify the optimum values related to metal forming of an example part with thickness as the response.

Keywords: Metal forming, design of experiments (DOE), response surface methodology (RSM), orthogonal array (OA),
optimization.

1. INTRODUCTION AND BRIEF REVIEW OF LITERATURE

For complex sheet metal parts, typically, there will be 3 to 6 different stages of forming operations before
a final product is made. Each forming stage involves separate die and punch tool set (see Figure 1),
that costs several thousands of dollars to manufacture and to assemble. With tens and thousands of
sheet metal parts (outers, inners, etc.) for a typical automobile, and for several car and truck models,
billions of dollars are spent annually by the die design departments and other transportation industries.
Reduction of cost and cycle time to manufacture these parts are of paramount importance leading to a
lot of research in innovative production and optimization methods involving modern light weight and
strong materials for the car body panels. Besides sheet metal forming, machining operations and other
forming processes such as hydro-forming, forging, extrusion and drawing are some of the applications
of large deformation mechanics. Large deformation software programs use one-step or incremental
time marching integration solvers to predict many forming characteristics so that the cost of prototype
operations of sheet metal parts can be reduced. Sheet metal forming characteristics such as thinning,
rupture (or splitting), wrinkling, etc., can be predicted and controlled with high level of confidence
using the simulation tools such as Abaqus/Explicit (Simula), AutoForm (AutoForm Engineering),
HyperForm (Altair Hyperworks), Dynaform/LS-DYNA (ETA/LSTC), Pam-Stamp (ESI Group), etc.
Application of DOE and RSM procedures to study the inter-relation between several forming
parameters has been reported by many researchers. Both these methodologies have been used for
several other applications within the design and manufacturing areas. Due to space limitations, the brief
literature presented in this section is limited only to select references in the sheet metal forming area. All
the references are grouped into three categories: Statistical methods for DOE and RSM methodology
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Figure 1. Thinning contour plot from LS-DYNA showing 19.5% thinning at the corner of the formed part (blank) [25].

are reported in [1-10]. Sample references on basics and analysis of metal forming processes are
reported in [11-15]. Applications of the DOE and RSM methodologies to sheet metal forming are
reported in [16-25]. Finally, references on 5-axes RSM are reported in [26-28].

RSM has been used by Stander [16], Jakumeit [17], Naceur [18] and Zhang [19]. Tang and Chen [20]
used robust design models for cylindrical cup drawing process by integrating the RSM methodology.
Shivpuri and Wang [21] carried an optimal design of spatially varying frictional constraints in reducing
the risk of failure due to wrinkling and thinning. They used an FEM-based genetic algorithm approach
(NSGA-II) to determine the deterministic Pareto front for multiple design alternatives, and a trade-off
strategy is used to identify an optimal design.

Marrettaa, et al. [22] proposed a multi-objective optimization problem integrating the FEM, RSM
and Monte Carlo Simulation methods. Echempati, et al. [23—25] used the DOE and RSM methodologies
to sheet metal forming application to optimize the thickness of example aluminum cups and for
instrument panel (IP) components. The work reported in this paper is based on the work done for the IP
component previously in reference [24], in which only two or three critical variables were considered
for the study. Figures 1 shows the tool set up of an example automobile IP component and the thinning
contours. The acceptable value of thinning for steel material is around 20% to 23% after which splitting
generally occurs.

The critical factors that contribute to thinning and other output parameters are: material properties,
contact surface friction, blank holding pressure, punch velocity and blank size. However, in practice,
and for more complex parts such as fenders and instrument panels (IP), there are more than 20 variables
that affect successful forming. Optimizing the critical forming parameters would be helpful not only to
increase life, reduce the weight of the parts, but also to reduce the scrap. DOE and RSM methodologies
are used to help in studying the interaction between the various forming parameters and to identify
the most influencing factors that affect the drawing operations, for example. Many large deformation
software tools such as those mentioned above, do not, however, incorporate DOE/optimization modules
embedded in them for easy interaction by the user. This is a topic of continuous research by the software
developers.

To date, however, the capability of RSM to depict the responses is still limited within R? Euclidean
space which consists of two treatment factors only. As the number of factors increase, the problem of
excessive number of observations emerges that makes the designs become inefficient and impractical.
Furthermore, the factorial designs do not give equal precision for the fitted responses at points that are
at equal distances from the design center. Investigating an optimal response of more than two factors
cannot be done visually. These constraints create a possibility to fall into the trap of ‘local optima’. In
view of this, Ane and Roller [26—28] introduced the 5-axes response surface model based on a rotatable
Orthogonal Array (OA) Lg (3*). This model enables both numerical and visual analyses of four factors
at three different levels simultaneously. Thus, it provides better analysis in identifying an optimal
response, in terms of ‘global optima’. The developed model has been validated with available data
from the literature. There are numerous other works available in the literature on applying the DOE and
RSM to metal forming applications. However, due to space limitations not all references are given here.
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2. BACKGROUND OF THE OPTIMIZATION STUDY
OF METAL FORMING PROCESSES

For any successful forming operation, one of the objectives is to optimize the sheet thickness. In
theory, the mechanical properties like the yield strength, tensile strength, elongation and hardness do
not change significantly if either the thickness or the initial blank geometry is changed. However, in
practice and during forming these properties do change and hence there is a range (min and max)
on these properties that were already well documented in the handbooks and the literature for HSS,
aluminium and many other sheet materials. The power law of plasticity is an example to mathematically
represent how the stress in the sheet varies as it is being deformed (strained). Depending on the exact
composition and the type of material being formed, well established failure criteria (for example,
Hill’s criteria) have been reported in the literature [11-15]. These material models predict how the
material parameters such as strain hardening exponent (n), plasticity modulus (K) and anisotropy
parameter (R) change as the sheet undergoes permanent deformation to assume the final shape of
the formed part (for example the fender of an automobile). There are numerous other variables, for
example, those related to stamping press machine, friction between the contacting bodies, initial blank
size and shape, etc., that influence if a sheet is formable without any defects. Some of these defects
include thinning and rupture (function of material properties, die and punch geometry, binder force,
punch velocity), wrinkling (due to excessive compressive forces in one direction of the sheet), loose
metal, etc. There are other kinds of quantifiable defects that the Die-Engineering personnel use to
define and to declare if the forming was successful. It takes many man-hours to set these forming
parameters both in the virtual and in real forming for successful drawing of a part. With many sheet
metal parts in an automobile scenario, the trial-and-error approach to obtain the first successful draw
can be tedious.

In view of the above discussions, most forming analysis engineers use predetermined value of the
design and the forming variables to reduce the virtual simulation times, only to possibly go through
another round of simulations based on the results of (real) prototype testing on the shop-floor, before
the final forming analysis report for production are released. Due to the fact that both the press settings
and the tools used for (the real) prototype forming may sometimes be different than the production
settings and production tools, often formability problems still exist that are usually only solved by
the production engineers. Friction between the contacting surfaces (mainly between the blank and the
binder, and the blank and the die) is not only not uniform (both in magnitude and in location), but it also
changes during forming which is not possible to measure or to input as a mathematical function into
simulation software. Problems get magnified when draw beads are present and either multi-stage or
progressive forming is involved. In view of these difficulties, many forming companies have developed
in-house designs to identify the upper- and lower-bound values for each critical forming parameter, and
for each sheet metal part. They do virtual simulations using randomly selected values within the upper-
and lower-bound levels until they obtain the first successful simulation. However, the first successful
simulation may not be an optimum design. Since the goal is to successfully form a part by initially using
the smallest blank (sheet) and to maintain constant thickness after drawing, there exists an optimum
combination of the forming variables that yield the lightest part. However, the optimized thickness
may not be available as a standard gage. Thus, it is confusing to satisfy the conflicting requirements
of all the forming process variables.

The objective of this paper to enlighten some of these issues and show how virtual forming together
with DOE and RSM studies may be useful to understand the interactions between these variables and
to better design a forming product.

3. RSM RESEARCH METHODOLOGY

In this paper a single design has been selected based on performing the following simulations (see
Table 1):

(i) Run full-factorial (3° = 243 runs) simulation,
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Table 1. List of Factors-levels.

Levels
Factors Factors Low (—1)  Average (0) High (+1)
1 Metal thickness (mm) 1.0 1.5 1.75
2 Binder holding force (kN) 20,000 35,000 60,000
3 Punch velocity (SPM) 60 150 250
4 Strain hardening exponent 0.15 0.20 0.28
5 Friction coefficient 0.08 0.15 0.30

(ii) Based on the result of the optimal factors-levels combination obtained in the previous step, do
further analysis under assumption of a single metal thickness using OA Lo (3%, i.e., 4 factors 3
levels), where the data is extracted from the same full-factorial design. Therefore, it can be safely
assured that both data (i.e. in full-factorial and OA Lg) come from a similar probability distribution.
This eliminates the chance of a typical heterocedasticity error to occur.

Simulation is performed using a set of hypothetical data. In generating the data and to avoid typical
error due to multicollinearity and autocorrelation, the data is built randomly using a random number
generator instead of an interpolation technique.

Generally speaking, the true response function is always unknown [1]. Therefore, prior studies need
be made to identify a region in the factor space that most likely produces optimal responses. Applying
the factors-levels combination, calculation is done using the second-order polynomial regression
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Here, y is the estimated response on metal thinning, a: constant; x;, x;: treatment factors i and j; B;:
coefficient of linear effect of factor i; Bij: coefficient of quadratic effect of factor i; B;: coefficient
of interaction between factors i and j; and &: error terms. Park [4] found that in most cases the fitted
second-order polynomial regression is an adequate model used to approximate the relationship between
aresponse and a number of treatment factors. Experimental design for fitting a second-order response
surface must involve at least three levels of each factor. In this regard, the 3% full-factorial or 3¥~7
fractional factorial design is a proper design [4, 5, 7, 8].

In the statistical analysis, the fittability of the polynomial regression model in fitting the experimental
data is measured using the signal-to-noise (S/N) ratio that applies ‘nominal-is-best’ as the target,
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Here, 72 thinning target = 1 mm, o2 variance, and n: number of samples. Then, the analysis of

variance (ANOVA) is performed to study the behavior of each treatment factor towards the responses,
when they are changed according to the assigned level.

After the optimal combination of factors-levels has been found, a confirmatory experiment is applied
using the orthogonal array (OA) Lo (3*) as described in Table 2. An orthogonal array (OA) is a fractional
factorial matrix which assures a balanced comparison of levels of any factor or interaction of factors.
An OA is balanced when each level of a factor has an equal number of occurrences with each level of
the other factors [2]. Hence, the OA Loy (3%) is a well-suited fractional factorial design which allows
rapid estimation of the individual factor effects through the use of a relatively small amount of data
without the fear of distortion of results by the effect of other factors [3, 5, 6].
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Table 2. Orthogonal Array (OA) L9 43).

Binder holding force  Punch velocity  Strain hardening exponent  Friction coefficient

RUN (x2) (x3) (x4) (x5)
1 —1 —1 —1 —1
2 -1 0
3 —1 1 1 1
4 0 -1 0 1
5 0 1 —1
6 0 1 -1 0
7 1 —1 1 0
8 1 —1 1
9 1 1 0 —1

X3

X1

Figure 2. Nonconcentric Circle Contour.

In this confirmatory stage, the analysis is focused on a certain level of metal thickness in order
to observe the effect of the remaining factors on the measured responses. Afterwards, simulation is
run with data drawn from the prior full-factorial design in order to preserve the data being consistent
comes from a single population and under the same probability distribution.

According to Ane and Roller [26-28], the OA Lo (3%) fits to the of 5-axes response surface model.
However, the design is not rotatable since the contours associated with the variance of the predicted
responses, var [J(x;)], are not concentric circles [28] as depicted in Figure 2.

Rotatability is an important property in the exploration of response surface because the precision
of the estimated surface neither depends on the orientation of the design with respect to the true
response, nor the direction of searching for the optimal condition. A design is rotatable if the estimated
responses have equal precision at all points in the factor space that are equidistant from the design
center. Maintaining the rotatability property requires variance of the predicted responses being constant
at points equal distant from the design center [1, 5].

According to Mason et al. [9], design points for more than two factors should lie on a sphere, or
a hypersphere, in four or more dimensions. Therefore, another two axial points need to be added on
the y-axes, as well as another two design centers. The axial points are determined as & = (np)"?° =
(9)925 = 1.73, where np represents the number of factorial points, which equals 9 in the design of
OA Lo (3*). Table 3 describes the additional axial points. Figure 3 illustrates the additional incomplete
block design which consists of six axial points and six additional design centers. Combining the OA
Lo (3*) and the incomplete block results in a rotatable design.
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Table 3. Additional Axial Points.

Binder holding force ~ Punch velocity  Strain hardening exponent

Friction coefficient

(x2) (x3) (x4) =
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Figure 3. Incomplete Block Design.
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Figure 4. Rotatable OA Lo (3%).

The rotatable design leaves the variance unchanged when the design is rotated about the center
(x1,x2,x3,x4,y = (0,0,0,0,0). Variance of the predicted response var[y(x;)]
is a function only of the distance of the point from the design center and is not a function of the direction.
Therefore, contours of constant standard deviation of the predicted response o [y(x)] are concentric
circles as illustrated in Figure 4. Finally, by translating the rotatable design using the transformation
algorithm [26-28] a 5-axes spherical factors space can be derived as depicted in Figure 5. Afterwards,
a heuristic “hill climbing” method [4] can be performed to seek the optimal factors-levels combination
on the spherical region that is expected to be the true global optima. But this is not discussed in this

paper.

= f' X[ X))~ f()a?
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Figure 5. A 5-axes Spherical Factors Space.

4. DISCUSSION OF RESULTS

The procedure in doing the simulation is as follow:

First, the statistical simulation based on the full-factorial model is run in order to get coefficients
for identifying the best-fit mathematical function. Using the identified mathematical function, the
“global minima” is calculated. In our case, the value of global minima is found at y = 0.087, which
is recognized as a “saddle point”. Genetic Algorithm is then run using the same objective function to
find the best combination of the control-factors. It is found that x1, x7, x3, x4, x5 are respectively, 0, 0,
0,1, and 1.

In the next step, full-factorial model is divided into 3 independent building blocks based on variable
x1 (i.e., the metal thickness at 1, 1.5, and 1.75 mm). Each building block is modified into a “Rotatable
OA Lo (34)” design, and then transferred onto a new codified scale between 0 to 4-1.73. The statistical
simulation and the Genetic Algorithm are repeated for each building block in the same manner as
explained in the previous paragraph to obtain the global minima at y = 0.059, and the best combination
of the control-factors: x;, x3, x4, x5 are respectively, 1, 0, 0, 1, and 1. In order to avoid the infeasible
(or negative) response values for y, the value of x| needs to be adjusted in each building block. In our
case, x1 at Level 0 (zero) produced reliable result. 3D graphs are generated independently between 2
factors for analyzing the correlation between pair of factors. Later, those graphs will be transformed
into the 5-axes response surface graph.

5. CONCLUSIONS

In this paper, a research methodology based on 5-axes response surface model is briefly described
to understand how it can be used to set the critical metal forming parameters of an example IP
component. By optimizing the forming variables a sheet metal component that has minimum percentage
thinning can be obtained. However, all the optimum variables may not be achieved in practice, but this
methodology helps in identifying and understanding the interaction between those variables so that
the real and virtual sheet metal experiments using the CAE tools such as HyperForm or LS-DYNA
can be set up. Simulation times using DYNA and/or by real experiments can be reduced using this
Quality Engineering tool. More work will be done in future to validate some of the statistical results
for the real sheet metal parts.
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