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Abstract 

Sheet-bulk metal forming (SBMF) is an emerging and sustainable manufacturing technology that 
offers potential both for shortening process chains and for designing new geometry features that 
enable functional integration. In order to make use of the latter one the design engineers need design-
relevant and manufacturing related knowledge that has to be acquired at early stages of the process 
development process. This objective is pursued by our self-learning engineering assistance system 
(SLASSY) that supports the knowledge-based analysis of sheet-bulk metal formed parts. It does so by 
means of metamodels that have been derived from manufacturing data via our KDD-based selflearning 
process. In this paper we present the foundations for a knowledge-based synthesis of such parts. That 
is, SLASSY will be enabled to automatically propose a design-for-manufacture geometry. We discuss 
the idea of design-for-manufacture from the SBMF point of view and show why our objective calls for 
multi-objective optimization and which algorithms meet our requests. Finally, a use case shows the 
utilization of evolutionary algorithms. 
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1 INTRODUCTION  

Saving resources is a crucial objective in the 21st century and is motivating intensive work in various 
research fields such as renewable energy, hybrid (or fully electric) vehicles or smart electrical grid. 
Lightweight design is another example that is particularly important for the automotive sector and can 
be achieved by different approaches: Decreasing the volume of specific parts (key components) or 
increasing the functional density per part are only two possibilities (Mallick, 2010). However, these 
lightweight approaches place new demands on key components which have to operate at their limiting 
capability due to increased loads and/or stresses. For example, the synchronizer rings in vehicle 
transmission units which feature precisely arranged gear teeth are in general made of brass. But to 
cope with higher loads they should in future be made of steel to benefit from higher strength and 
improved wear resistance (Song, 2008). In many cases current production processes are only able to 
deliver these new high performance components by means of many different sub-process steps and 
thus at high costs (Merklein, 2011). This motivates the research for new forming processes to produce 
high quality sheet metal components with heavily loaded functional elements. One possibility is to 
apply bulk forming operations to sheet metals which has led to a new class of forming processes with 
the overall designation sheet-bulk metal forming (SBMF) (Merklein, 2012). Exemplary sheet-bulk 
metal parts with different design features are depicted in Figure 1. Breitsprecher and Wartzack (2013) 
have described a detailed classification system for those features. 

 

Figure 1. Sheet-bulk metal formed parts from manufacturing experiment. The overall 
research goal is an automatic acquisition of design-relevant manufacturing knowledge. 

In order to establish this new technology the potential of SBMF from the engineering design point of 
view has to be revealed. Most of this potential resides in a broadened design space for secondary 
design features (teeth, engaging pieces, locking elements). However, in the sense of integrated product 
development, e. g. according to Andreasen (1987) and Ehrlenspiel and Meerkamm (2013), this 
requires an early acquisition of design-relevant manufacturing-related knowledge and implementation 
within the engineering design process. Furthermore, this knowledge has to be updated by the time the 
forming process evolves. 
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This objective is pursued through the development of the Self-Learning Engineering Assistance 
System referred to as SLASSY that supports the design engineer during the design process of sheet-
bulk metal formed parts. For details please refer to Section 2.2 and to Breitsprecher (2012). In the 
current development stage SLASSY offers the design engineer assistance through a knowledge-based 
analysis (in accordance to Weber (2005)) of sheet-metal parts regarding manufacturing process related 
parameters.  
The very next step is done with this contribution as seen in Figure 1. Our objective is to enable a 
knowledge-based synthesis of SBMF-parts. Why this objective calls for a multi-objective optimization 
(MOOP) and how such an optimization approach can be realized is shown in this contribution. 
The paper starts with a brief description of sheet-bulk metal forming and how manufacturability can be 
expressed for that process. Furthermore, well-known works regarding (multi-objective) optimization 
in the field of engineering design are highlighted (Chapter 2). The optimization procedure which bases 
on the utilization of metamodels derived from the KDD-process and evolutionary optimization 
algorithm is shown in Chapter 3. Our use case shows the application of MOOP for a specific sheet-
bulk metal formed part (Chapter 4) before the paper is concluded in Chapter 5. 

2 BACKGROUND AND RELATED WORK 

2.1 Design-for-manufacture in sheet-bulk metal forming 

The manufacturing technology sheet–bulk metal forming (SBMF) is being developed within the 
transregional collaborative research centre 73 (SFB/TR 73), funded by the German Research 
Foundation (DFG). This technology will unite the advantages of sheet and bulk metal forming 
processes to manufacture geometrically complex parts with variants and functional elements from thin 
sheet metal through forming. The objective is to manufacture these high–precision elements with close 
geometrical tolerances in which the geometrical details of the variants are in the range of the sheet 
thickness. The variants to manufacture are carriers and gearings derived from synchronizer rings and 
seat slide adjusters. The manufacturing of such variants out of sheet metals requires the overlapping or 
the sequence of two– and three–axis strain and stress states. To realize this, various sheet and bulk 
metal forming processes have to be combined (Merklein, 2012). For the development of SBMF 
processes, the process combinations “deep drawing – upsetting “, “deep drawing – extrusion“ and 
“cutting – deep drawing” will be investigated within SFB/TR 73. Exemplary SMBF-parts are shown 
in Figure 1.  
The process engineers use and combine different methods to develop their manufacturing technology, 
for example forming experiments (Merklein, 2014), finite element process simulations (Schneider, 
2011) and design of experiments (Fisher, 1995). The result of a SBMF process is acceptable, i.e. the 
SBMF part is manufacturable, if certain process parameters do not exceed upper and/or lower bounds. 
Depending on the part (see Figure 1) and the process, different parameters can be defined. The 
following list is a qualitative selection. Distinct values cannot be named since they depend inter alia on 
the forming machines, materials and the design features. 
 forming force ܨ	ሾ݇ܰሿ: A forming force (mostly axial) is necessary to induce sufficient stress 

within the material and allow two- and three-dimensional strain rates. Depending on available 
forming machines a maximum value cannot be exceeded. 

 horizontal loads ܨ	ሾ݇ܰሿ on the forming punch: In case of non-symmetrical sheet-metal parts, the 
vertical forming force will induce horizontal forces on the forming punch which lead to a lateral 
shift of the punch resulting in geometric errors of the formed part. A maximum value is not to be 
exceeded. 

 total equivalent plastic strain φ [–]: It measures the increase of dislocation density and the mutual 
hindering of dislocation, that is, the increase of flow stress. If it exceeds a material specific value 
the part fails during manufacturing or operation, e.g. due to micro cracks. 

 contact ratio c / mould filling volume V	ሾ%ሿ: The specific function of a part (e.g. torque 
transmission) is fulfilled, if the functional features (e.g. teeth of a gear) are shaped correctly. For 
forming processes this can only be achieved if the material flows into the mould and fills it as 
much as possible. A contact ratio of 1.0 indicates that the whole mould surface is in contact with 
flown material, that is the process engineer strives for that value. 
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 sheet thickness reduction ݐ∆	ሾ݉݉ሿ: The necessary material flow and the inevitable volume 
constancy cause a local thinning of the sheet-metal. A maximum value ݐ∆,௫ shall not be 
exceeded or the part will fail during operations. 

Notice that each part from Figure 1 is assigned to different process parameters. The deep-drawn cup 
(lower right corner in Figure 1) will be evaluated, e.g. by checking ܨ,φ and ݐ∆, whereas the plate in 
the upper left corner is evaluated with ܨ, φ and c (Figure 2 as an example). However, these are 
general discussions and specific values have to be assigned through discussion between the process 
and the design engineer. Both can influence each process parameter with specific attributes. The 
manufacturing engineers may use different extrusion oils to influence the tribological boundary 
conditions during the forming process. Also the usage of deep-drawing dies with different inlet 
geometries has a high influence on the forming force (Schneider, 2011) and the number of die 
reinforcements is often increased for more allowable forming cycles. On the other hand design 
engineers change the geometry of the SMBF part (synthesis step) to ensure the fulfilment of a specific 
function, e.g. the geometry of locking teeth similar to a synchronizer ring (see Figure 2). SLASSY 
predicts the process parameter based on the geometry parameters and the mentioned metamodels 
(analysis step). Figure 2 shows how process parameters change according to different geometries. 

 

Figure 2. Different variants of sheet-bulk metal formed parts with predicted corresponding 
process parameters. The cube represents the knowledge base that has been derived via 

the KDD-based self-learning process. 

Now the question is: How does a design look that meets the design-for-manufacture requirements? 
This is a "classical" optimization problem: For a given function ݂: ߗ → ܴ	from a set Ω we wish to find 
at least one element ݔ for which we can state	݂ሺݔሻ  	݂ሺݔሻ	∀	ݔ ∈ ሻݔ݂ሺ		or ߗ	  	݂ሺݔሻ	∀	ݔ ∈  ,ߗ	
that is, we seek for minimization or maximization, respectively. From the SBMF perspective each ݔ 
represents a specific forming process configuration (lubrication concept, inlet geometry, reinforcement 
concept, etc.) in combination with specific sheet-metal part geometry (length, width or height of a 
tooth, etc.). ݂ሺݔሻ represents a resulting process parameter as described above. However, since the 
manufacturability of each SBMF part is evaluated with at least two parameters, hence, the goal of 
deriving a design-for-manufacture design becomes a Pareto- or multi-objective optimization (MOOP) 
problem. A further challenge is the mixture of discrete and continuous attributes (set of ݔ). While 
geometrical product characteristics (e.g. length, width, angles, etc.) can be set to values ݔ ∈ Թ (e.g. 
1.5mm, 12.65mm, 65.3°) other attributes can only have discrete settings (e.g. extrusion oil A, B or C; 
1, 2 or 3 layers of reinforcements). These aspects have to be taken into account during the search for a 
suitable optimization approach. 
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2.2 SLASSY at a glance 

SLASSY is an engineering assistance system developed for the purpose of helping the product 
developer to design parts that are to be manufactured by sheet-bulk metal forming. The assistance is in 
accordance to the understanding of Weber (2005) of the design process that consists of iterations 
between the phases synthesizing and analysing. The synthesis step is supported by offering feature 
elements both for the primary design features (cups, plates, etc.) and the secondary design features 
(teeth, carriers, knurls, etc.) to the design engineer. The knowledge which is necessary for the analysis 
of a product regarding its manufacturability is acquired automatically and stored in SLASSY’s 
knowledge base. In summary, the development of SLASSY addresses the well–known challenge of 
knowledge acquisition in the field of expert systems. The term "self-learning" refers to the 
implemented Knowledge Discovery in Databases (KDD) process which uses data from the 
manufacturing process development (Röhner, 2011). After this KDD-process the knowledge is 
represented by means of linear or polynomial regression functions, M5P-regression trees or M5R-Rule 
learners (Witten, 2011). By means of statistical test methods SLASSY selects user-independently the 
metamodel (out of 24) which has the best data fit. In the current development stage SLASSY offers 
the design engineer assistance through a knowledge-based analysis (in accordance to Weber (2005)) of 
sheet-metal parts regarding manufacturing process related parameters. 

2.3 Metamodelling and Optimization in Engineering Design 

The development of computer technology constantly increases computing capacities and recent 
advances in quantum computers may offer much more potentials in the future. However, the high 
computational costs of virtual experiments (FEA, CFD, MBS, etc.) call for a more efficient solution 
when it comes to design optimizations that rely purely on computer-based system evaluation.  
A well-known and mature approach is the usage of mathematical models that map the system's 
behaviour and produce an output which shows a sufficient accuracy. Since the origin of such 
mathematical models is the simulation model itself they can be considered as a "model of the model" 
(Kleijen, 1986). Therefore, the term metamodel is often used, but further terms can be found in 
literature such as surrogate, reduced order, regression, approximation or response surface model. 
Metamodelling techniques have been utilized and constantly improved over the last decades. 
Overviews and applications can be found, inter alia, in Tomiyama et al. (1989), in Barton (1994), in 
Simpson et al. (1997), in Emmerich and Naujukos (2004) and in Pan et al. (2013). The issue of model 
fit estimation is discussed in detail by Jin et al. (2001). A metamodel can be used for different 
purposes, such as sensitivity analysis (Chen 2005), robust design (Sanchez, 2000) and design 
exploration (Ligetti and Simpson, 2005). Wang and Shan (2006) present a detailed review on different 
metamodeling approaches. To these works we will add this contribution with the focus on design-for-
manufacture in the context of sheep-bulk metal forming. 
In section 2.1 we derived the necessity for a multi-objective optimization approach to deal with the 
given problem of a knowledge-based synthesis of SBMF parts. Such optimizations are widely used in 
engineering design as Papalambros (2000) shows. A crucial step in design optimization is to model the 
system that is to be improved. Here one can make use of metamodels, too. They offer a drastic 
reduction of computational loads that accompany large, comprehensive or multi-domain models of a 
system. Metamodel-based optimization has been used, inter alia, by El-Beltagy and Keane (1999) for 
minimizing the energy level of an excited beam structure for a certain excitation frequenzy, by Sasena 
et al. (2000) to find a set of design variables for a midsized hybrid electric passenger car that 
minimizes the fuel consumption, by Jin et al. (2003) to show how metamodels can contribute to 
optimization problems with uncertain design parameters, by Hu et al. (2008) to increase the energy 
absorption in crash-relevant sheet-metal parts and by Kim et al. (2015) for deriving shapes of fan 
blades that emit less noise.  

3 METAMODEL-BASED OPTIMIZATION OF SHEET-BULK METAL FORMED 
PARTS 

We have shown that our objective of deriving a design-for-manufacture geometry of sheet-bulk metal 
formed parts can only be achieved via multi-objective optimization. A variety of optimization 
approaches and procedures are available for that purpose, see e.g. Papalambros (2000) and Nelson et 
al. (2001), however, there are some restrictions we have to take into account which will limit the scope 
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of usable algorithms. Beside the restriction/requirements that were described in the last paragraph of 
chapter 2.1 further aspects can be named. A single forming process simulation takes approximately not 
less than two days, including pre-processing, solving and post-processing (Schneider, 2011). Costs for 
a forming tool range from four- to five-digits (Euro) depending on the design. A metamodel-based 
approach is thereby inevitable. Furthermore, we have to consider the metamodels (objective functions) 
which are available in our project. These functions can show multiple local minima, non-continuity 
and/or discrete behaviour. While the manufacturing process is constantly improved over time the 
process engineers, of course, gain more and more experience. Those heuristics contain valuable 
knowledge that should be taken into account during the optimization.  
With these restrictions in mind we did extensive literature reviews and decided to focus on 
evolutionary algorithms (EA). EAs use the principles of biological evolution and involve 
(re)production of groups of individuals (population) via mutation, recombination (or crossover) and 
selection (Back, 1997). This procedure is repeated several times, whereas the population of each 
iteration is the generation. Furthermore, memetic algorithms as presented by Moscato (1989), a sub-
group of EAs, have gained our attention. Weicker (2007) explains that memetic algorithms combine 
population based algorithms and local search strategies to overcome the disadvantages of both. The 
former tend to research the design space in its whole width, however, they are very slow and need to 
create many generations to find the global optimum. On the other hand, local methods can move 
(evolve) quickly but tend to get trapped in a local optimum. The term memetic (or meme) originates 
from the field of behaviourism and describes the behavioural element of an individual that can be 
inherited but, in contrast to a gene, can be changed in every next generation, e.g. through imitation. 
The basic idea of most memetic algorithms is to optimize all evolutionary created individuals locally 
and only afterwards add them to the population, if they show a better behaviour than their predecessor.  

3.1 Deriving the fitness function 

An important step is the formulation of the objective or fitness function. This function can be 
understood as the formal (computer-interpretable) representation of the optimization problem. Each 
individual’s quality is evaluated by means of this fitness function to ensure comparability, whereas a 
single individual corresponds to a specific variant of a SBMF-part. As described in section 2.1 the 
term “manufacturable” means that part specific process parameters do not exceed upper and/or lower 
boundaries. These process parameters can be calculated via metamodels that are the result of the 
KDD-based self-learning process. The self-learning component of SLASSY (automatic acquisition 
tool) stores the metamodels by means of text-based representations that can only be interpreted by the 
inference machine of SLASSY. Since the optimization is carried out in the Matlab® environment the 
representation from SLASSY’s knowledge base have to be converted in an appropriate format 
(parsing). After that parsing at least one m-function is available that accepts an input vector x (product 
and/or process attributes) and returns a scalar value for a specific process parameter (e.g. ܨ, φ or ݐ∆). 
In case of a single-objective optimization this m-function can be easily processed by any optimization 
toolbox. The fitness function for a MOOP can be expressed as an aggregation function, a weighted 
sum of the different process parameter objectives. Another possibility is to create multiple m-functions 
for each process parameter and to hand them over to the evolutionary or memetic algorithm.  

3.2 Taking into account functional and further constraints  

A functional constraint in our context describes the consideration of a design features’s function 
during the optimization process. This function is ensured via a specific geometry. The teeth in Figure 1 
(lower left corner) are inspired by the teeth of a synchronizer ring from a drive train gear. They have to 
prevent the synchronizer ring from slipping back after it has matched the new gear ratio between 
drive-shaft and driven-shaft (details in Kuchle, 2010). Therefore the geometry of the teeth shows 
specific angles and geometrical proportions.  
Furthermore the manufacturing process data has to be taken into account. This data was elicited via 
parameter variation studies with upper and lower boundaries of the input parameters. The metamodels 
that are derived afterwards from the data (KDD-process) can predict the process parameters (e.g. ܨ, φ 
or ݐ∆) both for values that are beneath (interpolation) and above (extrapolation) those boundaries. 
However, extrapolation should be treated with caution, because predictions “outside” of the variation 
study range are not reliable.  
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Such constraints can be taken into account via different approaches (see Weicker, 2007 for details): 
restrictive methods will either reject invalid individuals immediately (so called “crib death”) or try to 
turn them into valid ones (repair strategy). Tolerant approaches will allow invalid individuals, 
however, those will be discriminated against the better ones during selection. The decoder approach 
chooses the coding in a way that a valid individual can always be assigned to each genotype. 

4 USE CASE AND EVALUATION 

In this use case a non-manufacturable design of a SMBF-part is chosen to be optimized. This design 
draft is created in SLASSY by synthesizing a primary design feature (deep-drawn cup) with secondary 
design features pattern (locking teeth). The default (initial) geometry is set as shown left in Figure 25. 
The self-learning process of SLASSY has acquired metamodels for the process parameters forming 
force	ܨ, total equivalent plastic strain φ and the contact ratio c. Each model is parsed into a Matlab 
processible format, whereas this operation has been automated via a short script we developed. The 
optimization objective is to maximize the contact ratio and minimize the forming force plastic strain. 
As a next step the constraints have to be derived. Figure 3 shows a sketch of the secondary design 
feature “locking tooth” with geometric characteristics (R0, R1, R2, H1, H0, L0, W0, A0), referred to 
as attributes and several constraints to ensure functionality. These attributes will be tuned during the 
optimization in order to find a design that is better with respect to manufacturability than the initial. 
Within the Matlab optimization toolbox environment the behaviour of the algorithms can be tuned 
inter alia by varying the numbers of generations and the size of each population. We tested several 
configurations and found that for the given example 800 generations with a population of 150 (black 
triangles in Figure 4) and 1200 generations with 400 individuals (grey rhombus in Figure 4) have 
shown the best results. Figure 4 shows a pareto chart of the forming force and the contact ratio with 
different optimization configurations. It can be seen that the mentioned configurations densify to what 
can be interpreted as a pareto front, whereas the remaining configurations are more loosely spread 
right of the pareto front.  

 

Figure 3. Constraints of the use case “locking tooth”. The constraints ensure both 
functionality of the SBMF-part and failure-free CAD-model creation. 

The result of a MOOP is a set of pareto-optimal points each of which represents a SBMF-part design 
that is optimal with respect to the process parameters	ܨ, φ and c and that meets the previously 
determined constraints. The design engineer can independently choose an individual from this set and 
transfer it to the synthesis tool of SLASSY in order to display this specific solution and discuss it with 
manufacturing experts. A complete automation and the output of a single optimization solution are not 
expedient, because the user loses the control over the assistance system and cannot comprehend its 
decisions. According to Stokes (2001) this is a major cause of failure for knowledge-based systems. 
The users tend to avoid dealing with the system and start to develop their own workarounds on the 
longterm. We developed the functions thinningPareto and explorePareto in Matlab to either reduce 
the size of the set or to search the individuals selectively. 
 

7



ICED15 

 

Figure 4. Pareto chart of plastic strain and contact ratio with different optimization 
configurations (pop= size of population, gen= number of generations). 

The configuration that is represented by triangles and rhombus turned out to  
deliver good results in a short time (40s). 

Figure 5 shows an optimized individual with the values of the according attributes and the resulting 
process parameters. Both the forming force and the plastic strain have been reduced by 11% (	ܨ) and 
37% (φ), however, the contact ratio increased by 10%.  

 

Figure 5. Initial and an optimized version of the locking teeth with according process 
parameters. Note, that there is mostly more than one pareto-optimal design. 

5 SUMMARY AND OUTLOOK 

This research is concerned with the problem of knowledge-based engineering of sheet-bulk metal 
formed parts. Sheet-bulk metal forming is a new manufacturing technology that offers potential for the 
design engineer, however, the design-relevant and manufacturing related knowledge has to be 
acquired and integrated into the product development in an early phase of process development. This 
is done by an automatic KDD-based self-learning process. The knowledge is formally represented by 
means of metamodels which have been used for the knowledge-based analysis of SBMF-parts. We 
showed that the goal of a knowledge-based synthesis corresponds to a multi-objective optimization 
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problem. MOOP has been used for many engineering design problems and can be achieved via 
different approaches. For this contribution we focussed on evolutionary and memetic algorithms 
which are available in toolboxes, e.g. in Matlab®. We extended such a toolbox to customize them for 
our purpose and to ease their usage. Beside the presented example we analysed different algorithms 
regarding their fit for our purposes. Table 1concludes our findings. 

Table 1. Comparison of evaluated algorithms with respect to the fulfilment of requirements 
regarding the optimization of our sheet-bulk metal formed parts. 

requirement 
memetic 

algorithm 
genetic 

algorithm 
genetic multi-

objective algorithm 
Multi-objective 
optimization 

with aggregation 
function 

with aggregation 
function 

yes 

Optimization with 
discrete attributes 

via fitness function yes yes 

Optimization under 
constraints 

yes yes yes 

approx. runtime (s) 1 0,5 40 

 
For a given SBMF-part design we started a multi-objective optimization process and derived a set of 
pareto-optimal designs that also met function related constraints. The presented example is 
straightforward and kept simple to ensure proof-of-concept and will be extended with further aspects 
in future works. Nevertheless, we set the basics for aspects like integration of manufacturing heuristics 
which result in local search strategies (memetics) during the optimization process. Since sheet-bulk 
metal forming is still in an early development stage, the process simulation models are extended by 
further aspects (e.g. friction models, material fatigue models, structured tool surfaces) step by step. 
This leads to continuous simulation studies being performed and continuous simulation data being 
created. From this data SLASSY will acquire metamodels which represent the “new” knowledge for a 
specific SBMF-part. Eventually SLASSY tackles the well-known bottleneck of knowledge acquisition 
within the development of knowledge-based systems as described in Hayes-Roth (1983). 
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