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Abstract 
The scaling of component sizes and distances between them, during the early stage of Vehicle 
Architecture Design, is time- and cost-consuming, due to numerous requirements as well as 
component and position alternatives. To enable fast scaling of dimensions, this paper introduces the 
development of empirical and semi-physical geometric substitute models. For over 25 components 
and distances between them, over 300 vehicles of the A2Mac1 benchmarking database serve as main 
data source. The resulting accuracies range from 80 % to 97 % and are applicable for initial 
architecture investigations. 

Keywords: design automation, design models, architectural design, early design phase, 
complex systems 

1. Introduction 

1.1. Background description 
At the beginning of the development of a vehicle, the Vehicle Concept Development Process takes 
place. During this early stage, the concept engineers develop a geometric model of the vehicle, from the 
product idea through to the scaling and positioning of components.  
In order to fulfil these tasks, the Vehicle Concept Development Process is divided into three phases: the 
Vehicle Dimension Design (VDD), the Vehicle Architecture Design (VAD) and the Vehicle Package 
Design (VPD) (Felgenhauer et al., 2017). The VDD defines the overall dimensions and the passenger 
positions. Accordingly, this phase determines the available installation space from the outside to the 
inside. Afterwards, the VAD scales the sizes of the most important components, for example the engine, 
the gearbox and the cooling system. In addition, the positioning of the components determines the 
distances between components. The variation of drivetrain concepts and component variants, for 
example different types of electric machines or combustion engines, lead to multiple architecture 
alternatives. Within these alternatives, the evaluation of the distances and collisions between 
components takes place, as well as the alignment with the available installation space. The selection of 
the best architecture alternative is based on a geometric, functional and economic assessment. Within 
the selected architecture alternative, the VPD scales and positions the remaining components. Like in 
the case of Vehicle Architecture Design, concept engineers assess the compliment with the available 
installation space. Series development and production follow the Vehicle Concept Development 
Process.  
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1.2. Problem description 
Aside from the definition of the exterior dimensions and the vehicle type during the VDD, the Vehicle 
Architecture Design influences the new vehicle concept the most. Numerous drivetrain concepts as well 
as component variants and installation positions create a vast solution space. This variance leads to two 
interdependent influences, causing high complexity during the VAD: 

 High number of requirements: For the vehicle architecture numerous requirements exist, for 
instance the vehicle acceleration and speed, as well as the crash deceleration. 

 High amount of component and position variants: Multiple component and position variants are 
available during the VAD. For example different engine types, such as electric and combustion 
engines, as well as engine orientations, e.g. longitudinal and transversal engine installation, are 
available. 

Due to the high number of requirements and variants, the coherences between the requirements and the 
component sizes, as well as distances between components, are unknown. This is especially true, as the 
coherences vary for different variants and drivetrain concepts. Consequently, concept engineers struggle 
to scale component sizes and required distances between components, at the beginning of the VAD. For 
example, it is difficult to determine the engine length based on vehicle acceleration and speed. 
Especially, as the engine length depends on the component variant, such as electric and combustion 
engines and their sub-variants. However, the sizes of the components and the distances between them 
are essential for the definition of vehicle architectures. 
As a starting point of the VAD, concept engineers assume the component sizes and distances between 
them. For vehicles with similar requirements and component variants, they can base it on previous and 
competitor vehicles. For new requirements and component variants, the concept engineers determine 
the dimensions based on assumptions and – if possible – early simulations. Afterwards, the assumed 
dimensions are iteratively refined. To create and evaluate multiple vehicle architectures, this is done for 
manifold component variants and drivetrain concepts. Consequently, the definition of the dimensions 
within the vehicle architecture design is not only difficult but also time- and cost-consuming. Due to 
limited capacities, it is impossible to holistically consider all available component variants and therefore 
vehicle architectures.  

1.3. Target  
To enable the fast scaling of dimensions, as a starting point of initial architecture investigations, the 
target is to develop geometric substitute models for the components and distances between them. 
Therefore, the authors use empirical data and physical equations to model the coherences between the 
requirements and the dimensions. Components and distances of combustion, hybrid and electric 
drivetrain concepts are considered. With the substitute models created, the dimensions are not only 
continuously scalable based on the requirements but also more precise than early-stage assumptions. 
Due to the fast prediction of dimensions, a holistic consideration of all component variants is also 
possible. This enables faster and broader architecture investigations. After the initial phase, the 
substitute models will be replaced by detailed designs. 

1.4. Research method 
The method presented considers the knowledge and experience of experts from the Vehicle Concept 
Development Department of AUDI AG and of an interdisciplinary group of researchers focussing on 
vehicle concepts at the Technical University of Munich. 

2. State of the art 

2.1. Terminology of vehicle architectures 
In the following, a vehicle architecture defines the body structure as well as dimensions and position of 
the most important components, such as the engine, gearbox, chassis and cooling system (Fuchs, 2014). 
In comparison, a topology only defines positions of components (Ried, 2014). 
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2.2. Existing approaches to Vehicle Architecture Design 
The state of the art regarding Vehicle Architecture Design is divided into the generation and analysis 
of the solution space within one architecture and the generation and comparison of multiple 
architectures.  
Fuchs (2014) is able to generate vehicle architectures for BEV and FCEV vehicles. Using physical 
coherences and empirical scaling factors he develops substitute models for the electric machine, the 
hydrogen tank and the high-voltage electrical system. In addition, he can scale the high-voltage battery 
as well as the fuel cell stack, based on an analytic determination of the required number of 
modules/stacks as well as reference geometries. For the remaining components, he either uses low-detail 
component models or existing components. However, the comparison of architectures is not within the 
scope of his work. Instead he analyses the solution space within one architecture, by variation of 
component configurations and properties. 
Ried (2014) uses a parametric model for the generation of PHEV vehicle architectures. He is able to 
display three different architectures by the variation of the underbody battery topology. To adapt to 
different input requirements he uses scalable component models for some components. However, he 
does not give a detailed overview of the considered components. In addition, he did not publish the data 
sources, the procedure or level of detail for the modelling of the component models, nor the resulting 
coherences and their accuracies. The selection within the feasible architectures is based on a cost 
analysis. 
Based on a parametric vehicle model for BEV, Kuchenbuch (2012) uses multi-criteria optimization to 
generate new architectures. His focus is to identify vehicle architectures with new battery topologies 
and the best compromise between energy consumption and battery range. A semi-physical battery model 
calculates the battery capacity and power using reference battery cells. All other component models are 
based on a database. However, the parametric models' dimensions are limited to 2.5-D.  
In 3-D, Matz (2015) uses an optimization algorithm to identify the optimal vehicle architecture for BEV 
based on the customer requirements and the availability of other public transportation systems. Like 
Kuchenbuch, he uses a battery model with physical equations and reference cells as well as a component 
database. In contrary, his focus is on the overall vehicle architecture instead of the battery topology. 

2.3. Research gap 
Several research methods contribute to Vehicle Architecture Design. However, previous authors focus 
on specific drivetrain concepts and use empirical and physical substitute models for only a few 
components. In addition, information regarding data sources, level of detail and evaluation is not 
given. 
Consequently, no method is available for the fast creation of freely scalable vehicle architectures with 
multiple component variants and drivetrain concepts. To enable the fast creation of vehicle architectures 
at the beginning of the development stage, geometric substitute models for the component sizes and 
distances between them are the basis. Therefore, this paper targets two questions. Firstly: How are 
geometric substitute models developed and evaluated for components and distances of combustion, 
hybrid and electric drivetrain concepts? Secondly: What are the resulting model accuracies, using the 
developed methods? These geometric substitute models mark the foundation for initial architecture 
investigations. 

3. Method for the development of geometric substitute models 
In an abstract way, substitute models transfer an input into an output. The geometric substitute models 
convert one or more input parameters or requirements into component sizes or distances between 
them.  
With the focus on the main dimensions, the geometric substitute models describe and approximate the 
complex geometries with cuboid, cylindrical and other simplified shapes. 
For the creation of new substitute model, the authors developed the following process (Figure 1). This 
divides into the definition of input parameters, the determination of dimensions and subdimensions, the 
modelling of coherences and the evaluation of the created models.  
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Figure 1. Procedure for the development of geometric substitute models 

3.1. Definition of input parameters 
Customer, concept and component requirements are available as input parameters for the development 
of geometric substitute models (Figure 2). The main difference between the input parameters is the effort 
involved in their determination and the level of detail. On one hand, the effort for the definition of 
customer requirements is relatively low. The use of customer requirements as a model input is 
legitimate, as the concept and component requirements correlate. For example, the capacity of the engine 
cooler depends on the engine power, which is dependent on the maximum speed. However, the indirect 
consideration leads to a limited accuracy. On the other hand, it is more difficult to determine the 
component requirements, as additional models and simulations might be necessary. However, these 
requirements offer a higher level of detail than customer requirements. The effort for determination and 
the level of detail of concept requirements ranges between these poles. Due to the focus at the early 
stage of Vehicle Architecture Design, the target is mainly on using customer and concept requirements 
for the development of the geometric substitute models. This phase usually lacks information about 
component requirements. 

 
Figure 2. Different types of input parameters 

3.2. Determination of dimensions  
Before modelling coherences, it is important to determine the granularity of the dimensions. 
One approach is to consider the overall dimensions of a component (no. 5, Figure 3). Therefore, the 
measuring effort is limited. However, the measuring accuracy is lower, as mounts and attachments lead 
to less standardized component shapes. Additionally, the measurement deviations are higher for larger 
dimensions.  
Another approach is to divide the component into subcomponents. These subdimensions add up to the 
overall component dimensions using dimensional chains. As displayed in Figure 3, the bore diameter, 
the cylinder spacing and the overhang add up to the engine length. Besides the overhang, the 
subdimensions are more standardized. Therefore, dismantling the components increases the measuring 
accuracy. On the other hand, it increases the number of measurements. 
The definition of the granularity is not only based on the advantages and disadvantages but also on the 
component shapes and the available data.  
For distances between components, a division into subdimensions is not useful. 
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Figure 3. Division of dimensions into subdimensions 

3.3. Modelling of coherences 
The geometric substitute models define the coherences between the input parameters and the 
dimensions. Therefore, empirical (black-box) and physical (white-box) as well as semi-physical (grey-
box) approaches are possible (Schorn, 2006).  

3.3.1. Empirical modelling 

Empirical models define the coherences between input data and output data, using statistical methods. 
Based on a multitude of data sets, the statistic model describes the most likely coherence between the 
input parameters and the dimensions. For geometric substitute models, the empirical coherences can 
either be regression equations or constant values derived from a normal distribution (Figure 4).  
For both, the first step is the measurement of the dimensions from existing vehicles. For each of the 
dimensions, it is necessary to identify and store the relevant input parameters. 
With the measured dimensions and the documented requirements, the initial target is to generate a 
multiple linear regression model. Within a developed MATLAB tool, the dependent variable defines 
the dimension to be modelled. Using the backwards elimination method, the user selects a multitude of 
explanatory variables from the predefined input parameters. The explanatory variables can be metric 
(e.g. engine power) or binary (e.g. fuel type). Prior to the creation of the regression, the Variance 
Inflation Factor (VIF) indicates mutual influences of explanatory variables. As a result, explanatory 
variables with a VIF higher than 10 are successively eliminated (Wooldridge, 2013). Using the reduced 
set of explanatory variants, the tool outputs the distribution of the residuals. Only normal distributed 
residuals fulfil the requirement of homoscedasticity, which is elementary for a linear regression 
(Fahrmeir et al., 2013). Afterwards, the tool creates the equation for the linear regression. Besides 
constant and gradient terms for all explanatory variables, it considers interaction terms within the 
variables. Based on this equation, the least squares method derives the regression function. Accordingly, 
Cook's distance method identifies and removes outliners. The bisquare-weights method reduces further 
effects of outliners. The F-test and its P-value evaluate the overall statistical significance of the 
regression. Therefore, a P-value of 5 % is set as a limit (Stoetzer, 2017). The F-test, the T-test and their 
P-values analyse the statistical significance of each explanatory variable. The tool iterates the regression, 
after the elimination of insignificant variables. Subsequently, the adjusted coefficient of determination 
(adj-R²) indicates the coverage of the real data by the regression. The normalized mean absolute error 
(nMAE) applies for the analysis of the model accuracy. In addition, a low difference between the nMAE 
and the root mean squared error (RMSE) indicates a uniform distribution without outliners (Chai and 
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Draxler, 2014). The requirement of homoscedasticity makes the consideration of relative errors 
obsolete. Finally, the tool outputs an equation for the coherence between the dependent variable and the 
explanatory variables. 
In the event that the regression function shows no significance, it is possible to derive a constant value. 
This means, that a dimension of a component or subcomponent and its variants is independent of the 
input parameters. Focussing solely on the automotive industry, there is only a limited scattering of the 
dimensions. Therefore, the MATLAB tool generates a normal distribution for the contemplated 
dimension. The limit of 1.96 times the standard deviation removes outliners. Thereafter, the variance as 
well as the difference between the mean and the median give an evaluation of the normal distribution. 
The Kolmogorov–Smirnov Test is another method for the interpretation and evaluation of the results. 
As a result, the nMAE outputs the model accuracy.  
Most commonly, the regression-based models indicate significance for overall dimensions, such as the 
engine length. The significance is equally high for the dimensions of active subcomponents, such as for 
instance the length of the cylinder block. For passive (sub-) dimensions, like the thickness of the engine 
belt drive, constant values show good results. 

  
Figure 4. Procedures for the empirical modelling of geometric substitute models 

3.3.2. Physical modelling 

Physical models link the input data and output data using physical coherences. Therefore, a dismantling 
of the component into subcomponents and their dimensions is inevitable. For all dimensions, a physical 
equation defines the physical principals among the input data and the output data. For example, a 
physical equation describes the coherence between engine torque and gear wheel and shaft diameters of 
a gearbox. As a result, the equations for the subdimensions combine to a model for the overall 
dimension.  

3.3.3. Semi-physical modelling 

The linkage of empirical and physical modelling constitutes semi-physical modelling. Like physical 
models, the dismantling of components into subcomponents is inevitable. Subsequently, the physical 
approach models some of the dimensions. This usually relates to the active subcomponents and their 
dimensions. However, empirical regressions could also model active subcomponents. The determination 
of model parameters and passive dimensions is based on empirical constant values. 
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3.3.4. Comparison of the modelling types 

For geometric substitute models, three different modelling types are available. However, their 
application is dependent upon the amount of data and the possibility of dividing components into 
subcomponents. In addition, the complexity of the physical principles and the available input parameters 
affect the selection of the method. Another criteria is the computation time. 
Empirical modelling requires a large amount of data (Wuppermann, 2016). However, this method is 
suitable for components with complex physical coherences, such as combustion engines. The 
application of the method is possible for overall dimensions as well as for subdimensions. Besides 
component requirements, the method allows the use of concept and customer requirements as inputs. 
The use of customer and concept requirements is advantageous as these are easier to determine, 
especially for competitor vehicles. However, the use of existing data limits the empirical models to a 
minimum of extrapolation. Due to the black-box modelling, the computation time is low. 
Physical models apply to components with limited data availability, but also limited complexity of the 
physical coherences. Furthermore, the dismantling of the components and dimensions into 
subcomponents and subdimensions is inevitable. Input parameters are solely component requirements. 
Therefore, the determination of the input parameters requires other models and simulations beforehand. 
Compared to empiric models, interpolation is not a limitation. However, the computing time is higher. 
Physical, geometric substitute models are often unfeasible as it is impossible to model all parameters 
and dimensions solely physically. 
In that case, semi-physical modelling is used. Therefore, the advantages and disadvantages of the 
empirical and physical models apply to the respective subdimension.  

3.4. Evaluation of the model 
The evaluation of the created geometric substitute models differs, depending on the modelling type. 
The nMAE analyses the accuracy of empirical modelled dimensions and subdimensions, using all 
available data. To assess the general validity of the models, an Out-of-Sample-Test (OOST) is executed 
(Tashman, 2000). Within the evaluation, the regression or constant value is based on 75 % to 90 % of 
the available data. Consequently, the remaining evaluation data serves as an input for the created 
regression equation. Subsequently, the evaluation of general validity consists of the comparison of the 
resulting dimensions with the real dimensions of the evaluation data. For constant values, the evaluation 
compares the derived value with the values of the evaluation data. To avoid the influence of random 
data selection, the OOST iterates multiple times and outputs the average deviation. This cross-validation 
serves for the assessment of the models' general validity. However, the OOST is infeasible for the 
compound overall dimensions and is therefore only conducted for all individual or subdimensions. 
Hence, the implemented model considers all available data. 
The evaluation of physical models always uses all available data. Based on the requirements of the 
available data, the physical function calculates the dimensions. Afterwards, the nMAE of the modelled 
dimensions and the real dimensions defines the modelling accuracy of physical models. 
The semi-physical models use both approaches for evaluation, depending on the modelling type of a 
dimension. 
For dismantled dimensions, the evaluation methods test all subdimensions and the compound overall 
dimensions. This evaluates the overall performance and the mutual influences of inaccuracies. 

4. Resulting geometric substitute models 
Based on the presented method, the authors developed geometric substitute models for over 25 
components and component variants as well as distances between components in the vehicle's front 
section. Figure 5 gives an extract of modelled components and distances. With a focus on the early stage 
of Vehicle Architecture Design, the authors mainly used customer and concept requirements as inputs. 
For the data, the automotive benchmarking database A2Mac1 is the main source. For the years 2010 to 
2017, the database contains over 320 vehicle disassembles of over 45 automotive manufactures 
(A2MAC1 EURL, 2018). Using the example of combustion engines and electric machines, the 
following gives an insight into the developed models. 
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Figure 5. Extract of the created geometric substitute models 

4.1. Combustion engines 
The target of the substitute models for combustion engines is the output of the engine length, width and 
height.  
To increase the modelling accuracy, the engine is divided into subcomponents (Figure 3). The A2Mac1 
database provides measurements and input parameters for over 300 combustion engines, from vehicles 
from 2010 to 2017.  
The main input parameters are the engine torque and the engine power. As vehicle manufacturers offer 
the same engine with different performances, it is important to identify the peak values. The database is 
split mainly into in-line and V-type engines, depending on the subdimension. The fuel type 
(petrol/diesel) and the charging (naturally aspirated/supercharged) are either considered as input 
parameters (binary variable) or by segmentation of the database. 
For 227 of the over 300 engines, the authors measured over 20 subdimensions and gathered over 10 
types of input parameters. Afterwards, the authors created an empirical model for the engine. The 
following exemplifies the modelling in a longitudinal direction for in-line engines. For the engine width 
and height as well as for V-type engines, similar results exist. 
Figure 6 shows a regression between the engine torque and the engine displacement. In this respect, the 
database is divided into naturally-aspirated petrol, supercharged petrol and supercharged diesel engines. 
The engines within each of these groups have similar torque and power characteristics. Therefore, the 
elimination of the engine power as an input parameter avoids a mutual influence with the engine torque. 
The results indicate that naturally aspirated petrol engines have the highest engine displacement for the 
same torque requirement. 
Subsequently, a normal distribution reveals the average cylinder swept volume (Figure 6). The different 
design philosophies of the vehicle and engine manufacturers induce the variation in the cylinder swept 
volume (van Basshuysen and Schäfer, 2015). However, the resulting mean of 449 cm³ is close to 
500 cm³, which is ideal for modular engine systems of 2 litres (4 cylinders), 3 litres (6 cylinders) and 
more (Huß, 2012). With this regression function and constant value, it is possible to calculate the number 
of cylinders based on a required engine torque and a definition of the engine, fuel and charging type. A 
constant value for the stroke-bore ratio allocates the cylinder swept volume by the bore diameter and 
the stroke (Figure 7). Previous studies also came to the outcome that in-line engines are long-stroke 
engines (Huß, 2012). The resulting bore diameter is an input for a regression function of the cylinder 
spacing. A similar coherence is described in literature (Köhler and Flierl, 2012). The number of 
cylinders, the bore diameter as well as the cylinder spacing gives a calculation for the cylinder block 
length. Adding a constant value for the overhang, the engine length is output. This is feasible, as the 
components of the overhang, such as the belt drive, depend less on the engine torque. The nMAE of the 
modelled length is 8.4 % for R- and V-type engines. The models for the engine width and height show 
similar results. 
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Figure 6. Regression between the engine swept volume and the engine torque (left) 

and normal distribution for the cylinder swept volume (right)  

 
Figure 7. Normal distribution for the stroke-bore ratio (left) and regression between 

the cylinder spacing and the bore-diameter (right) 

 
Figure 8. Modelled engine length in dependency of the engine torque 

4.2. Electric machines 
For the electric machines, the authors modelled an empirical geometric substitute model and enhanced 
a semi-physical one.  
The A2Mac1 database and datasheets from suppliers provide in total 43 electric machines for the 
empirical model. The application field of all electric machines considered is within the automotive 
industry. Asynchronous (ASM) and permanent synchronous (PSM) machine types are in some cases 
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distinguished as a binary variable. The developed model is based on the overall dimensions, instead of 
subdimensions.  
Figure 9 shows the regression function for the overall volume, including the housing (without stiffeners), 
of the electric machine. The volume depends on the nominal machine torque and the nominal machine 
power as metric variables. The input voltage of the considered electric machines ranges from 115 V to 
700 V. Instead of using the input voltage as an explanatory variable, the power of each engine is 
normalized to 400 V. This is the most common input voltage within the available engines. In contrary 
to combustion engines, the machine torque and the machine power parameters do not have a strong 
mutual influence. The machine type is a binary variable within the model. Like in literature, the torque 
shows a greater impact on the resulting volume than the power, for both machine types (Müller and 
Ponick, 2012). As a result, asynchronous machines require more volume than permanent synchronous 
machines. 
A regression function for the length-diameter ratio allocates the volume to the machine length and 
diameter. This function depends on the maximum rotational speed. In this respect, the database consists 
of only 24 electric machines, as the remaining 19 do not provide information about the maximum speed. 
The result shows that high-speed electric machines are low in diameter, to avoid high circumferential 
forces. The nMAE is 12.5 % for the machine length and 7.2 % for the diameter.  

 
Figure 9. Regression between the machine volume and the machine nominal torque 

and power (left) and regression between the length-diameter ratio and the maximum 
rotational speed (right) 

The physical equations for the rotor and stator dimensions enable the semi-physical approach for the 
electric machines. The model of Horlbeck (2018) already calculates the rotor as well as stator length 
and diameter, as part of an efficiency map simulation. This model itself is a semi-physical approach, as 
some physical equations require constant values. Using the regression function for the length-diameter 
ratio and constant values for the winding head and casing, it was possible to enhance the existing model. 
Consequently, the model outputs the overall length and diameter. For the machine length and the 
diameter, the results of the semi-physical model show a nMAE of 11.6 % and 19.9 %.  

4.3. Influences on the model accuracy 
The presented models and the evaluation show high accuracies. Nevertheless, several influences on the 
accuracy of geometric substitute models exist.  
The amount of available data sets limits the accuracy of the empirical substitute models. For valid 
results, the target is to use at least 30 to 40 datasets. However, especially for BEV components, existing 
data is not extensive. Besides the amount of data, the measurement accuracy affects the results. Even 
though the A2Mac1 database offers high-quality benchmark analysis, the measures can be imprecise for 
complex and unstandardized components, such as the exhaust system. To increase the accuracy, dubious 
datasets are not included in the database.  
Modular strategies of the automotive manufacturers further affect the results. The use of a component 
for multiple requirements increases the production quantity. Therefore, the challenge is the identification 
of the maximal requirement to the component as input.  
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Compared to empirical models, semi-physical models often show slightly lower accuracy. Empirical 
models include the design nuances of the automotive industry. One advantage is that semi-physical 
models require less data for the modelling.  

4.4. Discussion of geometric substitute models 
The results of the combustion engines and the electric machines show the ability of empirical and semi-
physical geometric substitute models to determine dimensions. The accuracy of the developed geometric 
substitute models ranges from 80 % to 97 %. The lower accuracies occur mainly within the cooling 
system due to the high design flexibility of the plastic side parts. Nevertheless, the accuracies are high 
enough for use at the early stage of the vehicle concept development. 
The empirical and semi-physical models output the statistically most likely dimension for an inputted 
requirement. Consequently, the geometric substitute models do not output the best available solution on 
the market. In addition, the models do not directly include the ability of control units and software to 
slightly increase component capabilities without changing the geometry. As a result, the geometric 
substitute models are a robust and conservative solution. 
The geometric substitute models define the coherences between a limited number of input parameters 
and the dimensions. This enables use within the early phase of the vehicle concept development. In 
contrary, the models lack the consideration of all requirements, as well as design and manufacturers 
philosophies.  
Consequently, the models apply only for the initial phase of the architecture design, as later on, more 
requirements and detailed geometries need to be considered. 

5. Conclusion and outlook 
Due to the high number of requirements and component variants, the determination of component 
dimensions as well as distances between them is difficult and time-consuming at the beginning of 
vehicle concept development. Therefore, the authors developed geometric substitute models based on 
the presented method. In doing so, they considered components and distances of the vehicle front from 
combustion, hybrid and electric drivetrains.  
At the initial stage of Vehicle Architecture Design, concept engineers can use these models to scale the 
component dimensions and distances between components. These dimensions serve as starting point for 
architecture investigations. Due to numerous substitute models, a comparison between different 
components and component variants is possible. In addition, concept engineers analyse the effects of 
changes within the requirements on the dimensions. As a result, the use of geometric substitute models 
reduces the development time and capacities. At 80 % to 97 %, the model accuracies are high enough 
for the early design phase. As the development progresses, simulations and designed components will 
replace the dimensions taken from the substitute models. 
As an outlook, the authors will use the created substitute models for the automated and scalable design 
of vehicle architectures with multiple drivetrain concepts. At the beginning of the development, this tool 
supports concept engineers with architecture investigations. Through the evaluation of the tool, the 
authors will also assess substitute models in their applicability. 

6. Contributions 
The lead author Matthias Felgenhauer developed the idea for geometric substitute models. Based on that 
idea, he created the method for the generation of the models, including the statistic procedure and the 
evaluation. Raul Marksteiner and Florian Schneider supported in the development of the statistic 
procedure. During their Masters’ theses, both generated geometric substitute models by statistic data 
evaluation, with close discussion of the procedure, the concept and the results with their thesis advisor 
Matthias Felgenhauer. Christian Angerer supported in the comparison of empirical and semi-physical 
models of electric machines. Markus Lienkamp contributed to the method, the proofreading and strongly 
agrees with the concept. 
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