
INTERNATIONAL DESIGN CONFERENCE - DESIGN 2018
https://doi.org/10.21278/idc.2018.0499

SUPPORTING DESIGN TASKS THROUGH
CONSTRAINT SATISFACTION TOOLS

M. Nardelli, P. Cicconi, R. Raffaeli and M. Germani

Abstract
Nowadays, different commercial tools are available to support engineers during optimization tasks in
engineering design; however, many researches have been still studying tools and methods to improve
the design process and overcome some limits related to configuration and design optimization. This
paper proposes a methodological approach to highlight how a CSP analysis can support the first phase
of an optimization analysis, to reduce the design space of solutions to be investigated and subsequently
optimized. A test case shows a CSP study applied to steel structures for oil & gas applications.

Keywords: design optimisation, constraint modelling, engineering design, steel structures

1. Introduction
The design of mechanical products is often an integrated and collaborative process which regards the
optimization of Constraints Satisfaction Problems (CSP). Many tools and research are available to
support the optimization phase in mechanical design; however, a lack still exists in the development of
a flexible and agile design process. Generally, designers use and manage design rules, tables, formulas,
and relations during the mechanical design process. A CSP model implements all these knowledge
representations as mathematical constraints. Trabelsi et al. (2015) applied a CSP method to support the
preliminary design of a linear vehicle suspension system. This research, which was focused on the sizing
of the system, proposes a comparison between conventional design methods and shows how the
computation time related to CSP models is satisfactory.
Yvars (2011) introduced a deterministic CSP approach to solve a pareto bi-criterion optimization. They
proposed a research example focused on a bolt coupling (Yvars, 2011). His research used CSP methods
to reduce the size and the complexity of the design phase. However, this approach does not consider the
integration of the design workflow with other tools such as external configuration software or numerical
FEM solvers. The use of FEM solvers increases the calculation time and requires the use of other kinds
of optimization algorithms. Yvars (2011) show how designer can test several ways by adding or deleting
constraints in a CSP model. Raffaeli et al. (2017) also studied CSP problems. Their focus was on
mechanical systems such as Engineer-To-Order (ETO) products. These complex products require a
more complex formalization of knowledge. They studied a CSP approach for a further implementation
into a generic configuration system. Generally, design parameters in CSP problems must satisfy a
collection of constraints related to normatives, customer requirements, marketing requirements, etc.
Some research proposes configuration approaches to solve CSP problems in different application fields.
An ETO application was analysed by Cicconi et al. (2018). He proposes an approach to perform the
configuration and the optimization of oil & gas ducts. However, his approach lacks a CSP module to
reduce the variation of parameters to be optimized. Lin et al. (2017) proposed a TRIZ-based approach
to support design when the solutions of optimization methods do not meet the objectives of problems to

DESIGN SUPPORT TOOLS 393

solve. His approach is focused on the analysis of system contradictions which extracts data from the
simulations generated from the optimization loop.
The CSP approach requires the definition of a mathematical model which reproduces the behaviour of
the physical system (Guns et al., 2013). A software tool is necessary to apply this approach in mechanical
design. The model to be applied is parametric; therefore, each variable can change is value in function
of a defined variation range. Traditional CSP solvers iterate each configuration of parameters until the
defined mathematical constraints are satisfied. However, in mechanical industry, many design problems
allow numerous solutions to be applied. For this reason, a lot of research is focused on techniques and
methods to support the design optimization. As described by Yvars (2011), the multi-objective
optimization is an approach for satisfying the conflicting criteria. In the context of oil & gas applications,
Cicconi et al. (2016) describe an optimization workflow to reduce the weight of big steel structures. This
approach considers the integration of FEM simulations into the optimization analysis. Constraints were
defined as normative checks to be verified after each structural calculation.
Regarding the use of configuration tools in mechanical design, the Rule Based Design (RBD) approach
is quite used (Chavali et al., 2008) to implement tailored KBE (Knowledge Based Engineering)
applications, using scripts and programming codes. The use of RBD programs enhances a reduction in
design cycle time by 50% (Efthymiou et al., 2013). The current engineering design process shows an
imbalance between the time required for non-creative activities and the time available for the exploration
of innovative design spaces. This imbalance can become critical for complex products (La Rocca et al.,
2012). A limit of traditional RBD systems is the difficult to solve open-ended problems such as
optimization studies where the possibilities and design variations are difficult to predict.
Optimization analysis are based on searching the parameters configuration which optimizes the target
objectives (Lin et al., 2017). In this approach, constraints are defined as limits, which are represented
through Boolean checks (if <condition> then <instruction-1> else <instruction-2>), which are
generally evaluated at the end of an optimization workflow. The condition to be verified is a rule or a
formula which regards the know-how of the product knowledge. However, if an optimization analysis
requires the employment of heavy time-consuming simulations, the verification of constraints is applied
after the iteration of many simulations. Therefore, the optimization workflow can also generate many
not-verified solutions. This case is not efficient because it employs computing resources to calculate
different not-valid configurations. Additionally, an optimization analysis requires the definition of a
range of values for each parameter to be analysed. This phase is manual, and it required the designer’s
know-how to configure each parameter range. Parametric template-models can help to develop a design
automation workflow from configuration to optimization; however, the definition of the variation range
is often an engineer’s task and therefore a manual activity.
This paper proposes a CSP approach to overcome the two highlighted limits, which interest the phase
of the design optimization. While the first limit regards the application of the constraints analysis only
at the end of the design workflow, the second one is the difficulty to set the suitable parameter range to
avoid the generation of not-satisfied solutions to be simulated. The aim of the research is to apply a CSP
model to generate a space of satisfied solutions to be involved in a further optimization phase, to reduce
the number of not-satisfied calculation before the simulation phase. The analysis of a CSP model can be
defined as a first level of an optimization design process for reducing the parameter variations in further
analysis. The CSP model can be solved using a combination of heuristics and combinatorial search
methods to be solved in a reasonable time. Particularly, analytical models can be quickly solved;
therefore, they can be employed in an optimization analysis.
The test case shows a CSP study applied to steel structures used in oil & gas applications. In this paper,
a Gecode-based tool has been developed using MiniZinc programming language. The developed tool
includes the mathematical formulation of design constraints used for the design of steel structures. In
particular, the test case is focused on Design Constraints, without considering Normative Constraints
or Configuration Constraints at this level.
The remainder of the paper introduces the state of the art about CSP problems and describes the proposed
approach. A test case section shows an industrial application for the design of oil & gas steel
constructions, called as “module”. In the context of mechanical design, the results show how a Gecode-

394 DESIGN SUPPORT TOOLS

based tool can be used as a customized solver for CSP models to reduce the space of solutions to be
analysed in an optimization phase.

2. State of the art
Computational Design Synthesis (CDS) is a research area focused on activities to automate the design
phase in the production. CDS must be able to generate automatically alternatives and to avoid long and
useless routine works (Campbell and Shea, 2014). Some tools have been developed but they remain too
time and memory consuming. Mueller et al. (2015) applied this method to design and optimize parts for
additive manufacturing processes. In his work he analyzed parameters of the 3D printing process and
gathered the necessary information to understand variations of 3D printed structures. The resulting
parameters led to build accurate part models and optimize, fabricate, and test them in the best way.
CDS is used in every Knowledge Based Engineering (KBE) application to automate design routines and
to implement a multidisciplinary product design. More specifically KBE tries to increase complex and
iterative calculation with geometrical modelling. KBE is in fact a research field that studies
methodologies and technologies for capturing and re-using product and process engineering knowledge
to achieve automation of repetitive design (Verhagen et al., 2012).
Therefore, a KBE approach also concerns generative geometry, ability to write reports, ability to
increase automation and extend features in CADs tools, reuse of design rules and engineering knowledge
(La Rocca et al., 2012). This technology has its roots in Artificial Intelligence (AI) and in Knowledge
Base Systems (KBS). La Rocca describes a typical KBE application for aircraft applications. This is an
applicative case that shows how this technique is efficient in helping the designer to analyze and solve
problems that must face frequently (Zhu et al., 2017).
One of the hard challenges in the aircraft design is the modelling of the harness 3D routing. The difficulty
stays in its intrinsic complexity, but also in the increasing of the design constraints and in its dependency
on any little change. Zhu et al. (2017) proposed methods based on KBE and optimization to reach
minimum cost routing solutions that satisfy constraints of all relevant design rules.
In all cases, despite how they are called, during the design phase the designer has to face, consciously
or not, a set of rules to solve. This set of rules in Mathematics is named Constraint Satisfaction Problem
(CSP). They could be defined as objects that must satisfy a set of constraints. These problems are tasks
for research in AI and operational research. They are extremely interesting; in particular, CDS is a
powerful mean to express engineering problems and pursuit solutions in product design supporting the
knowledge-intensive process (Helms et al., 2009).
Many design problems are analyzed in literature using a CSP approach with design synthesis. An
example is in the field of robotics systems (Trabelsi et al., 2015), where Chen developed a simple design
principle for an untethered, entirely soft, swimming robot with the ability to achieve directional
propulsion without batteries and on-board electronics. A multidisciplinary design optimization advisor
system (Sobieszczanski-Sobieski et al., 2015) and the implementation of an ICAD generative model (La
Rocca et al., 2002) was proposed in the design of aircraft applications.
There are numerous methods to solve this kind of problems and many other methods are also studied to
improve calculation time and precision in CSP problems. The more common algorithms are:
backtracking, branch and bound, and depth first search. They represent three categories of methods to
solve CSP problems. Many variations and improving of them have been studied and implemented in
literature.
Backtracking is a technique that consists to enumerate all possible solutions and prunes all the ones that
do not satisfy some constraint (Kumar and Lin, 1986). It explores a graph tree remembering all the nodes
already analyzed, in that way, if a path must be pruned, it can come back to the node that is not visited
jet without the risk to move in a path already explored. The backtracking algorithm has an exponential
complexity, so it is not so efficient for not NP-complete problems. Nevertheless, the algorithm integrates
some heuristic techniques that allow to decrease complexity.
Branch and bound is a general technique to solve finite optimization problems (Morrison et al., 2016).
This approach starts subdividing the original problem in subproblems, which are easier to solve. Branch
and bound algorithms are called as implicit enumeration because they enumerate all the possible
solutions and tries all of them, but some will be deleted proving their non-optimality.

DESIGN SUPPORT TOOLS 395

Depth first search is another technique of tree search, its particularity is that the algorithm can explore
nodes far from the root without having visited the nodes of first generation (Mehlhorn and Sanders,
2008). The search strategy explores the graph reaching the deepest possible node in it. Once all the
deepest nodes are analyzed, the algorithm comes back to explore all the previous ones.
A development platform that implements all these algorithms and many others is Gecode, which is an
open, free and fast toolkit used to solve CSP problems. Gecode already contains many features but its
strength is in the fact that is programmable: it also supports the implementation of new constraints,
strategies, and search methods (Schulte and Tack, 2006). The programming language for extensions is
C++ based. Moreover, Gecode is efficient in time and memory consuming. It has been used to solve
over 50000 test cases with good results. However, Gecode has some limitations: it does not support
geometrical constraints, it does not support connections with database, it has also limitations using
constraints that involves strings, finally the connection with other software must be implemented with
custom libraries.
Münzer (2015) used Gecode to implement part of a model to search design solutions derived from a set
of specified techniques. This method is a concrete application of the CDS. The method consists in:
define a metamodel of the problem and its constraints, find the interconnections, assign variables using
CSP problems (Gecode) and optimize an objective function using simulating annealing.
Other tools have been analyzed to solve CSP problems such as MiniZinc (Nethercote et al., 2007),
FlatZinc, and Choco. MiniZinc is a medium-level constraint modelling platform based on Zinc language
(Guns et al., 2013). It can be mapped onto existing solvers. Algorithms developed with MiniZinc are
compiled in FlatZinc language. FlatZinc is a low-level programming language which can directly
interact with solver such as Gecode and others (Urli et al., 2015). Therefore, FlatZinc is used to translate
the CSP model into the language required by the defined solver.
Choco is another free open-source Java library dedicated to CSP problems (Prud’homme, 2017). The
user can define its problem in a declarative way by stating the constraints that he wants to satisfy. Then,
the related CSP model is solved by alternating constraint filtering algorithms with a search engine.
These tools and others have all the same problem that they cannot be programmed; thus, plug-in and
extensions are not allowed. Considering these limitations, the proposed paper uses Gecode with
MiniZinc as solution language to model and solve CSP problems.

3. Approach

3.1. Method
Figure 1 shows the overall methodological approach proposed in this paper. The scope of the research
is the definition of tools and methods to supply the design phases from configuration to optimization.
The aim regards the reduction of time in mechanical design using feasible and automatic design tools.
These tools implement knowledge base formalized in rules, formulas, and constraints. In fact, a part of
this research is focused on the implementation of CSP models and the development of programming
codes to describe typical constraints used in mechanical design. While next section deals with the
approach used to develop the software tools, including algorithms to customize the modelling of
mathematical constraints, this section describes the proposed design approach, where design constraints
are implemented in a CSP model.
Three constraints levels are highlighted in Figure 1: Configuration Constraints, Design Constraints, and
Performance Constraints. This classification aims to investigate the different types of constraints inside
a typical mechanical design, which is based on configuration and optimization phases. In particular,
Configuration Constraints are those validation rules and formulas which mainly are related to the
implicit knowledge of the engineer. An example could be the compatibility analysis between two
options; thus, this level introduces constraints to evaluate the product structure of a configuration. The
level called Performance Constraints is focused on normative checks and conditions such as structural
limits to be applied; therefore, this level mainly concerns the explicit knowledge. On the other hand, the
Design Constraints level highlights validation rules mainly focused on the domain of the technical
know-how. These constraints can refer to the formalization of explicit and implicit knowledge.
Examples can be validation rules to check the weight balance of assemblies into a steel structure.

396 DESIGN SUPPORT TOOLS

Another example can be rules to evaluate and limit the number of different types of components, such
as the types of beams into an assembly.

Figure 1. The overall methodological approach

Summarizing, if Performance and Configuration Constraints are mainly related to normative and setup
rules, Design Constraints are focused on practical satisfaction rules which depends on the engineer’s
know-how. In this context, Configuration Constraints are usually implemented in configuration tools
such as filtering and validation rules, and Performance Constraints are defined as check conditions into
optimization loops after simulation analysis. The collection of Design Constraints is often defined into
previous two levels; however, the proposed approach highlights the necessity to use an intermediate
level. The CSP model, where Design Constraints are applied, is a rapid rule solver which can evaluate
many parametric configurations in few seconds, without interfacing with external computing such as
FEM analysis. In fact, a classical CSP tool is only based on mathematical equations and disequations.
This approach can reduce the number of solutions to be evaluated in a next and more complex
optimization loop, which involves a time-consuming analysis. This intermediate level is also suitable to
avoid technical rules inside a configuration workflow; in order to separate knowledge focused on a
specific configuration’s workflow from technical knowledge which could be generic and valid for
different cases.
The use of a CSP model as proposed (Figure 1) can also perform the automatization from configuration
to optimization. In fact, the outcome of a configuration process is often a parametric model, which can
be optimized in a further step of analysis. However, it is often difficult to define a variation range for
each variable. In this case, the solution of a CSP model can evaluate a design space of solutions to reduce
the number of combination which don’t satisfy some design constraints. Therefore, this approach allows
different not-satisfied configuration to be analyzed with a CSP model and to be excluded from
simulations and optimization loop.

3.2. Development approach
The method proposes a software application which is based on Gecode toolkit. In this approach, while
Gecode runs in the background, an interface shows and manages the CSP problem. Figure 2 describes
the methodological workflow from the CSP definition to results.
The first step is the definition of the CSP problem. This means to translate something that often is only
in the mind of the designer in a standard understandable problem, made of variables and constraints. All
the technical and geometrical specifications must be rewritten in a universal language that anyone can
read. Therefore, the approach considers the implementation of a formalism to provide the input
definition. The user can add constrains compliant to the defined formalism. The formalization of the
technical knowledge, which is required to define constraints in the CSP definition, is a difficult phase
because design routines are often based on experience. They are not related to standard procedures.
While explicit knowledge is easy to translate in a mathematical constraint, implicit and tacit knowledge
are very difficult to be elicited and formalized.

DESIGN SUPPORT TOOLS 397

Figure 2. The software development workflow

The second step is to write the CSP problem in a simplified Graphical User Interface (GUI), which uses
Gecode to solve the CSP problem. Figure 7 describes the proposed GUI, which consists of four levels:
Variables, Constraints, Solver Method, and Results. The first level concerns the settings and
management of variables using a table. The Constraints level regards the definition of the mathematical
rules to be verified in the CSP calculation. While the solver method to be applied is defined in the third
level, the forth level shows the results. After pushing the Solve button (Solver Method level in Figure
7), Gecode is invoked. The CSP definition is translated in Gecode language for the computing. In fact,
the proposed application uses Gecode algorithms to solve CSP problems. Gecode elaborates the
instructions to be solved, and then returns results.

4. Case study
The proposed test case proposes the CSP modelling of a big steel structure called module, which is a
big 500-ton steel construction used for power applications in oil & gas. Firstly, this section introduces
the context related to oil & gas modules. Secondly, the CSP model is described with parameters and
constraints. The CSP study focuses on some constraints related to the structure’s weight and frame
sizing. In particular, groups with pipe frame were analysed in the proposed CSP module. The objective
of the test case is to reduce the space of all possible solutions to be optimized after a first CSP analysis.
Despite the verticalization of this case study, this CSP tool remains a general tool. In fact, any product
structure can be added and modified to describe a general CSP model with relative constraints. As said
before, the difficult part is to formalize these constraints in a mathematical way. After this step, the
implementation of the problem is quite intuitive using the proposed interface.

4.1. Oil & gas module
An oil & gas plant is often a collection of pre-fabricated modules. In fact, modularization and pre-
assembly are common design strategy in oil & gas plants. In particular, a module is the smallest
functional unit with its equipment, machines and steel structure. Therefore, a single module (Figure 3)
can contain power generation units, gas compression units, and process equipment for oil & gas
applications. The modularity approach for oil & gas plants reduces the overall cost and the delivery
time. The structure of a classic module consists of steel beams used for internal support of machines and
equipment. The structure can be divided in the supporting frame (or main frame) and the secondary one.
The secondary level of the structure regards the supports for minor equipment. In general, the secondary
frames and braces increase the stiffness of the structure of the module. The oil & gas module, proposed
in this test case, is an example of a 500-ton construction with three levels. Figure 4 shows the relative
FEM model defined using the SAP2000 software.

398 DESIGN SUPPORT TOOLS

Figure 3. An example of an oil & gas module during the installation phase

A list of Design Constraints has been analysed and discussed with an expert team of designers. As
example, one of the analysed design constrains regards the sizing of frames. The ratio between column’s
section and height is a limit constraint for checking the buckling analysis. This limit can be evaluated
using analytical formulas which depends on the geometry of the beam section. The buckling check is a
typical design constraint which can be evaluated with an analytical approach before to run a FEM (Finite
Element Methods) analysis. Another constraint is related to the sizing of pipe beams. The ratio diameter
per width is a constraint which can be described using a mathematical formulation because the limit
value depends on the diameter range. Constraints can be also applied to verify the dimensions of each
beam at a connection node. Additional constraints have been defined on the construction’s weight.
Constraints can be applied to regulate the weight balance of each group of beams. The steel structure’s
weight can be also considered as a constraint for the CSP analysis and for reducing the number of
combinations to be evaluated in a further optimization phase.

Figure 4. The structure modelling used for the FEM analysis

4.2. Implementation and results
The product structure of the proposed module and the frame collection have been acquired from
SAP2000, which is the FEM tool employed in this test case. An import tool has been developed using
VB.NET and implementing API (Application Programming Interface) tools provided by SAP2000. The
imported structure has been formalized in an UML class diagram.
As explained in the beginning of the section, the test case proposes the CSP modelling of a steel
structure. In particular, this structure, called module, consists of groups; each group is characterized for
its type and its function. Types can be: standard, pipe, or built-up.
The principal task is to find the minimum weight configuration varying external diameters and thickness
of the pipes of the structure. The constraints are the dimensional tolerances for the diameter and
thickness and the range of the ratio between the diameter and the thickness must respect certain limits.

DESIGN SUPPORT TOOLS 399

Some support variables and support constraints are added for the weights of the groups.
Figure 5 shows the developing phases, which regards the employment of different programming tools
such as VB.NET, MiniZinc, and scripts. Firstly, the authors have been implemented all the classes
necessary to manage the model; these are involved in three projects, developed in VB.NET. One is
entirely dedicated to the interface, here there are implemented all the forms that allow the user to add
variables and constraints. The scope is to ease the user to define the model without a complication due
to hard programming languages and for reduce time consuming. Another project is the generalization
of the model. One class represents the model that is made of variables, constants, and constraints.
Variables and constraints are also classes. Another class is implemented to manage the model. The last
project is the specialization of the model for this case study. It represents a beams module. The classes
needed are the types of the beams and the manager of the module. In these classes there all the functions
to write a script to send to MiniZinc, the program that can solve CSP problems. After MiniZinc has
analysed and solved the problem, the results are gathered in the interface and shown to the user.

Figure 5. Developing phases from VB.NET to MiniZinc

All the constraints are implemented in a VB.NET application, which fills the problem simply reading
the xml file with the structure of the steel module (Figure 6). A function, called Fill Beams, reads data
and automatically gathers all the information necessary to solve a minimization problem for the weight
of the structure.

Figure 6. Module’s structure imported from SAP2000 and exported in xml format

(lengths are expressed in meters and weights in kg)

The computational model of a CSP problem is divided in variables, constants, and constraints. Figure 7
shows constraints definitions and ranges of variables. The Solve command runs a simplified
optimization using MiniZinc. This run is based on the definition of the defined constraints.

400 DESIGN SUPPORT TOOLS

Figure 7. Settings interface and first optimization results

4.2.1. MiniZinc settings

This sub-section describes the information which is sent to MiniZinc. This process runs in the
background; therefore, the code is hide to the user. This code, developed in VB.NET, starts the MiniZinc
process without using a user graphical interface. Figure 8 shows the constants of the CSP problem.
Groups with fixed weight, that is because the beams are of standard type, have only one constant: the
weight. Groups with variable weight, pipe beam, have three constants for each group: the total length of
the group, the count of the group and the density of the group material.
The variables are the external diameter and thickness. These two variables are replicated for each group
of pipe beam involved. As shown in Figure 9 only four groups are made of pipes. For each group there
is also the variable “Weight_<GroupName>” that is a support variable. Because the task is to minimize
the weight also the total weight becomes a variable (“Weight”).

Figure 8. Example of constants
declaration

Figure 9. Example of variables
declaration

Figure 10 shows the declaration of constraints in MiniZinc language. They consist of geometrical limits
and support constraints.

Figure 10. Example of constraints declaration

DESIGN SUPPORT TOOLS 401

4.2.2. Calculation and results

An additional collection of constraints has been added. The expert designer defined rules to limit the
weight related to some groups of beams. Figure 11 describes a list of constraints which regulate the
weight balance of a module’s structure. Certain parts of the structure must respect a percentage weight
range against to the total weight.

Figure 11. Example of additional constraints used for the weight balance

The proposed calculation regards a searching of all solutions which satisfy the defined constraints. A
programming script runs the solution using MiniZinc, which is a tool based on Gecode platform. Figure
12 describes the graphical report of the CSP solution. The solutions which satisfy each constraint are 74
against an initial number of about 2000 combinations. Admissible solutions are highlighted in green and
yellow. The time to compute the problem is 1s 572msec.

Figure 12. A graphical report of the CSP solution

The achieved CSP solutions show a weight range between 489 ton and 625 ton. The configuration of
the minimized solution is highlighted in Figure 13. The 8 parameters describe diameter and thickness
related to four groups of tubular beams. While the weight value is expressed in kg (Figure 13), the
diameter and thickness values are evaluated in mm.

Figure 13. The result of the CSP optimization which minimizes the module’s weight

for the 8 parameters analysed

As a future development, the resultant list of the CSP solution can be used as a basis for a further genetic
algorithm optimization. The second step of the design optimization will introduce FEM tools for the
detailed calculation of the mechanical behaviour.

402 DESIGN SUPPORT TOOLS

Using the proposes CSP tool, the test case shows an important time reduction of about 7 working days
for the conceptual design phase. The resulting lead time for the structural optimization is about 3 days
against an average period of 10 working days. Additionally, this reduction allows the time related to the
proposal submission to be reduced. Generally, a proposal submission takes from 4 to 8 weeks. A
reduction time of about 1 week can be suitable for the successful closure of the proposal.

5. Conclusions
A methodological approach has been proposed to highlight how a CSP analysis can support the first
phase of an optimization analysis, to reduce the design space of solutions to be investigated and
subsequently optimized. The analysed CSP model is a connecting point between configuration and
design optimization. The calculation velocity of CSP problems (about 1.5s) can be used to develop
automatic procedures for improving the integration between configurators and optimization tools. The
optimization analysis, based on simulations, also requires the necessity to set constraints to verify the
product performance. Even if different constraints, related to simulation results, must be always
analysed after an optimization loop, some constraints can be analysed using analytical model before the
run of an optimization loop.
The paper shows how a CSP approach can be used to obtain a first level of satisfied solutions solving
analytical design constraints without running heavy-computing simulations such as FEM analysis. The
analysed results highlight 74 solutions from a set of about 2000 combinations.
The article has been verticalize for this case study; however, the interface permits to add different types
of models and constraints. The proposed CSP tool is a generic framework to build a product structure
using an O-O programming. Therefore, a designer can generalize this tool implementing a specific CSP
model with its relative constraints.
As a future development, the second step of the design optimization will consider FEM tools for the
detailed calculation of the mechanical behaviour. However, the further optimization will be based on
the reduced list of solutions elaborated from the CSP analysis. Another future improvement could be
the development of extensions features such as propagators of constraints to support mechanical design.

References
Campbell, M.I. and Shea, K. (2014), “Computational design synthesis”, Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, Vol. 28 No. 3, pp. 207-208. https://doi.org/10.1017/S0890060414000171
Chavali, S.R., Sen, C., Mocko, G.M. and Summers, J.D. (2008), “Using Rule Based Design in Engineer to Order

Industry: An SME Case Study”, Computer-Aided Design and Applications, Vol. 5 No. 1-4, pp. 178-193.
https://doi.org/10.3722/cadaps.2008.178-193

Cicconi, P., Germani, M., Bondi, S., Zuliani, A. and Cagnacci, E. (2016), “A Design Methodology to Support the
Optimization of Steel Structures”, Procedia CIRP, Vol. 50, pp. 58-64.
https://doi.org/10.1016/j.procir.2016.05.030

Cicconi, P., Raffaeli, R., Marchionne, M. and Germani, M. (2018), “A Model-Based Simulation Approach to
Support the Product Configuration and Optimization of Gas Turbine Ducts”, Computer-Aided Design and
Applications, Vol. 15 No. 6.

Efthymiou, K., Sipsas, K., Mourtzis, D. and Chryssolouris, G. (2013), “On an Integrated Knowledge based
Framework for Manufacturing Systems Early Design Phase”, Procedia CIRP, Vol. 9, pp. 121-126.
https://doi.org/10.1016/j.procir.2013.06.179

Guns, T., Dries, A., Tack, G., Nijssen, S. and De Raedt, L. (2013), “The MiningZinc Framework for Constraint-
Based Itemset Mining”, 2013 IEEE 13th International Conference on Data Mining Workshops.
https://doi.org/10.1109/ICDMW.2013.38

Helms, B., Shea, K. and Hoisl, F. (2009), “A Framework for Computational Design Synthesis Based on Graph-
Grammars and Function-Behavior-Structure”, 14th Design for Manufacturing and the Life Cycle Conference;
6th Symposium on International Design and Design Education; 21st International Conference on Design
Theory and Methodology. https://doi.org/10.1115/DETC2009-86851

Kumar, V. and Lin, Y.-J. (1986), “A framework for intelligent backtracking in logic programs”, Foundations of
Software Technology and Theoretical Computer Science, International Conference on Foundations of
Software Technology and Theoretical Computer Science, pp. 108-123. https://doi.org/10.1007/3-540-17179-
7_7

DESIGN SUPPORT TOOLS 403

La Rocca, G. (2012), “Knowledge based engineering: Between AI and CAD, Review of a language based
technology to support engineering design”, Advanced Engineering Informatics, Vol. 26 No. 2, pp. 159-179.
https://doi.org/10.1016/j.aei.2012.02.002

La Rocca, G., Krakers, L. and van Tooren, M. (2002), “Development of an ICAD Generative Model for Blended
Wing-Body Aircraft Design”, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization.
https://doi.org/10.2514/6.2002-5447

Lin, L., Rasovska, I., De Guio, R. and Dubois, S. (2017), “Optimization Methods for Inventive Design”, In:
Cavallucci, D. (Ed.), TRIZ – The Theory of Inventive Problem Solving, pp. 151-185.
https://doi.org/10.1007/978-3-319-56593-4_7

Mehlhorn, K. and Sanders, P. (2008), Algorithms and Data Structures: The Basic Toolbox, Springer, Berlin.
https://doi.org/10.1007/978-3-540-77978-0

Menouer, T. and Cun, B.L. (2013), “A Parallelization Mixing OR-Tools/Gecode Solvers on Top of the Bobpp
Framework”, Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing.
https://doi.org/10.1109/3PGCIC.2013.42

Morrison, D.R., Jacobson, S.H., Saupee, J.J. and Sewell, E.C. (2016), “Branch-and-bound algorithms: A survey
of recent advances in searching, branching, and pruning”, Discrete Optimization, Vol. 19, pp. 79-102.
https://doi.org/10.1016/j.disopt.2016.01.005

Mueller, J., Shea, K. and Daraio, C. (2015), “Mechanical properties of parts fabricated with inkjet 3D printing
through efficient experimental design”, Materials & Design, Vol. 86, pp. 902-912.
https://doi.org/10.1016/j.matdes.2015.07.129

Münzer, C. (2015), Constraint-Based Methods for Automated Computational Design Synthesis of Solution
Spaces, PhD thesis, Technische Universität München.

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J. and Tack, G. (2007), “MiniZinc: Towards a
Standard CP Modelling Language”, In: Bessière, C. (Ed.), Principles and Practice of Constraint Programming
– CP 2007. CP 2007, Lecture Notes in Computer Science, Vol. 4741, Springer, Berlin, pp. 529-543.
https://doi.org/10.1007/978-3-540-74970-7_38

Prud'homme, C. (2017), Choco-tuto Documentation. [online] Available at:
https://media.readthedocs.org/pdf/choco-tuto/latest/choco-tuto.pdf (accessed 11.12.2017).

Raffaeli, R., Savoretti, A. and Germani, M. (2017), “Design knowledge formalization to shorten the time to
generate offers for Engineer To Order products”, In: Eynard, B., Nigrelli, V., Oliveri, S., Peris-Fajarnes, G.
and Rizzuti, S. (Eds.), Advances on Mechanics, Design Engineering and Manufacturing, Lecture Notes in
Mechanical Engineering, Springer, Cham, pp. 1107-1114. https://doi.org/10.1007/978-3-319-45781-9_110

Schulte, C. and Tack, G. (2006), “Views and Iterators for Generic Constraint Implementations”, In: Hnich, B.,
Carlsson, M., Fages, F., Rossi, F. (Eds.), Recent Advances in Constraints. CSCLP 2005. Lecture Notes in
Computer Science, Vol. 3978, Springer, Berlin, Heidelberg, pp. 118-132. https://doi.org/10.1007/11754602_9

Sobieszczanski-Sobieski, J., Morris, A. and Van Tooren, M. (2015), Multidisciplinary design optimization
supported by knowledge based engineering, Wiley. https://doi.org/10.1002/9781118897072

Trabelsi, H., Yvars, P.-A., Louati, J. and Haddar, M. (2015), “Interval computation and constraint propagation for
the optimal design of a compression spring for a linear vehicle suspension system”, Mechanism and Machine
Theory, Vol. 84, pp. 67-89. https://doi.org/10.1016/j.mechmachtheory.2014.09.013

Urli, T., Ceschia, S., Schaerf, A. and Di Gaspero, L. (2015), “A General Local Search Solver for FlatZinc”,
Metaheuristics International Conference, Marocco.

Verhagen, W.J.C., Bermell-Garcia, P., van Dijk, R.E.C. and Curran, R. (2012), “A critical review of Knowledge-
Based Engineering: An identification of research challenges”, Advanced Engineering Informatics, Vol. 26 No.
1, pp. 5-15. https://doi.org/10.1016/j.aei.2011.06.004

 Yvars, P.-A. (2011), “Pareto Bi-Criterion Optimization For System Sizing: A Deterministic And Constraint Based
Approach”, International Conference On Engineering Design, ICED11.

Zhu, Z., La Rocca, G. and van Tooren, M.J.L. (2017), “A methodology to enable automatic 3D routing of aircraft
Electrical Wiring Interconnection System”, CEAS Aeronautical Journal, Vol. 8 No. 2, pp. 287-302.
https://doi.org/10.1007/s13272-017-0238-3

Dr. Paolo Cicconi
Università Politecnica delle Marche, DIISM
via Brecce Bianche 12, 60131 Ancona, Italy
Email: p.cicconi@staff.univpm.it

404 DESIGN SUPPORT TOOLS

