

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2018
https://doi.org/10.21278/idc.2018.0287

TOWARDS SYSTEMATIC INCONSISTENCY
IDENTIFICATION FOR PRODUCT SERVICE
SYSTEMS

M. R. Basirati, M. Zou, H. Bauer, N. Kattner, G. Reinhart, U. Lindemann, M. Böhm, H.
Krcmar and B. Vogel-Heuser

Abstract
Value shift towards services led to emergence of product-service systems (PSS) as intertwined products
and services. PSS development requires collaborating teams with higher domain diversity to tackle
service side as well as product side. Since every domain employs a particular set of tools and models, it
is challenging to manage consistency among them. However, the PSS literature lacks approaches for
managing inconsistency among various type of models. This study proposes a framework that supports
establishing a systematic solution for inconsistency identification during PSS development.

Keywords: product-service systems (PSS), model based engineering, modelling, systematic
approach

1. Introduction
Competitive global economy necessitates manufacturers to increase sustainability and having a longer
relationship with customers by providing new services in addition to the conventional products (Tukker,
2004). Besides, environmental considerations are putting restrictions on the products and the way they
are developed leading manufacturers to rely more on value share of services (Mont, 2002; Meier et al.,
2010). This shift towards services introduced concept of product-service-system (PSS) as a system
consists of combined product(s) and service(s) (Baines et al., 2007).
To develop a PSS, diverse teams from managerial to technical level need to continually collaborate in
order to address high level vision of the system as well as detailed functionalities and interactions
between services and physical elements (Vasantha et al., 2012). Thus, not only the number of
stakeholders raises in PSS development, but also the stakeholders are more likely to be heterogeneous
from dissimilar domains. Accordingly, PSS development deals with multidisciplinary approaches,
artefacts and models expanded over different levels of organization (Vasantha et al., 2012).
Thus, it is vital to manage consistency among the models from heterogeneous domains during a PSS
development. While numerous studies addressed PSS modelling and proposed various modelling
techniques such as Data Flow Diagrams (Durugbo et al., 2011) and Systems Modelling Language
(Balmelli, 2007), there is lack of research on how to keep the complex network of models during PSS
development consistent. Nevertheless, a consistent design process is crucial in both ensuring the system
functionality and increasing interdisciplinary co-design. For example, in a digitalized machinery
company, offered data services should meet requirements, allowed by the adopted sensor types and not
violate country-specific privacy laws. Though various methods have been proposed to partially
automate the inconsistency identification processes, a general and systematic underlying framework is
missing (Zou and Vogel-Heuser, 2017).

SYSTEMS ENGINEERING AND DESIGN 2811

Therefore, in this study, we investigate on inconsistencies in PSS development and develop a
framework, which can be applied to identify the inconsistencies systematically. The reminder of this
paper is structured as follows: Section 2 provides related work on inconsistency management as well as
PSS modelling literature. Afterwards, we introduce different types of inconsistencies in Section 3.
Subsequently the developed framework to identify inconsistencies is presented in Section 4. The
framework is applied and evaluated on a case of e-bike-sharing system, presented in Section 5. We
discuss the framework applicability and its limits in Section 6. Finally, Section 7 summarize the study
and shed light on future works regarding managing inconsistencies during PSS development.

2. Related work
Inconsistency Management by definition is the process of handling dependencies in a way that the goals
of stakeholders are concerned (Spanoudakis and Zisman, 2001). We reviewed the literature on
inconsistency management from software engineering domain as well as mechanical engineering
studies. Besides, we present few number of studies, which addressed inconsistency-related topics in PSS
development.
Nuseibeh et al. (2000) and Finkelstein et al. (1996) have developed processes for the management of
inconsistencies in the domain of software engineering. Both approaches share the common feature that
inconsistencies must be determined with respect to defined consistency rules. The consistency rules,
which are defined by experts, specify two essential necessities. First, they check whether a model is
applicable as a valid model of a particular modelling language or not. In another words, this step analyses
correctness of the models from syntactical point of view. Second, they ensure that the software models
in a development process comply with valid standards of the software development project. In addition,
both approaches involve activities to detect, diagnose and manage inconsistencies. There are other
supporting activities, such as the specification and application of an inconsistency policy. These
additional activities are not included in both approaches, which makes them different from each other.
Besides, Finkelstein focuses on the term "inference", expressed as conflicts of interdependencies.
Spanoudakis and Zisman (2001) combine the both aforementioned approaches (Finkelstein et al., 1996;
Nuseibeh et al., 2000) to create a process concentrated on special methods and techniques for
inconsistency management. The approach is represented in six steps, which starts with the detection of
overlaps, followed by the detection and the diagnosis of inconsistencies, handling of inconsistencies and
finally, the specification and application of an inconsistency management policy.
Gausemeier et al. (2009) employ triple graph grammars and introduce a rule-based approach aimed at
preserving consistency between domain-spanning and domain-specific models in the development of
complex mechatronic systems. For this purpose, they developed an approach based on triple graph
grammars to capture correspondences between models. However, this approach is limited to a special
technique and its applicability on cross-domain models is weak.
Hehenberger et al. (2010) define consistency rules and propose a conceptual approach based on the
automatic checking of the consistency rules. First, they use domain-spanning ontologies for identifying
overlaps. Subsequently, they apply the consistency rules, which are simple conditions of a model that
are either true or false, depending on whether the model satisfies them or not.
Qamar et al. (2012) address dependency modelling and present an approach to avoid inconsistencies in
models, based on the explicit modelling of dependencies. They argue that impact of changing a model
on the other models can be predicted by modelling dependencies, which enables easier inconsistency
management.
Herzig and Paredis (2014) apply pattern matching, which is based on the transformation of models into
graphs and a subsequent pattern-based identification of inconsistencies.
Feldmann et al. (2015) apply semantic web technology and present an approach where properties of
semantic webs, which enable processing not only the linking of data but also their meaning, can be used
to identify inconsistencies in models. A knowledge-base approach represents all Models in a Resource
Description Framework (RDF) and reveals inconsistencies with SPARQL inconsistency query.
Dávid et al. (2016) introduce the inconsistency tolerance. In the context of this approach, semantic
inconsistencies are quantified. Afterwards, it is decided how far they can be tolerated.

2812 SYSTEMS ENGINEERING AND DESIGN

In PSS field, Shimomura and Hara (2010) introduce a conflict resolution method for PSS development.
The method consists of two major strategies. First, an inconsistency is detected by lexical analysis of
names and descriptions of functions and variables. If two objects' names include related words, the
method investigates if there is an inconsistency or not. The second strategy applies a set-based approach
to detect value overlaps that lead to inconsistencies. To this end, the related objects are identified
manually. Nevertheless, the study does not address how heterogeneity of PSS models are handled.
Song and Sakao (2016) investigate on conflicts among services in product-service offerings, which also
employs a linguistic techniques. However, the study does not cover the cross-models inconsistency
problem.

3. Inconsistency types
In this study, we define inconsistency as any logical contradiction between two facts or two
presentations of facts expressed in formal models as well as in informal artefacts such as requirements
written in natural language. This definition excludes any high level conflict between goals, priorities
and plans of people or organizational units. Therefore, we focus specifically on how heterogeneous
models and artefacts can lead to inconsistencies during PSS development.
To this end, we developed a classification of inconsistencies that specifies what types of inconsistencies
exist between models by extending the work of Feldman et al. (2015). The inconsistencies are classified
based on two high level dimensions. First dimension determines how the two inconsistent elements are
related to each other. We defined four high level relationship types, namely existence, equivalency,
refinement and satisfaction. Furthermore, we determine if an inconsistency is occurred on syntactical
level or semantical level. The syntactical level consists of notational and conventional types. The
semantical level is divided to system/project specific as well as domain-specific types. The
inconsistency types and examples are presented in Table 1. Besides, concrete examples of inconsistency
types are demonstrated based on a case in the discussion, Section 6.

Table 1. Inconsistency types

 Existence Equivalence Refinement Satisfaction

Notational Missing Name;
Typo

Different Names for
Same Element

- -

Conventional Missing a Standard's
Element

Incompliancy with a
Standard's Element

- -

System/Project-
specific

Missing Element in
a Model based on
System's Logic

Different Value for
Same Element in
Different Models

Different Refined
Value for an

Element

Unsatisfied Logics
of System

Domain-
specific

Missing Element in
a Model based on
General Domain

Rules

Different Value for
an Element based on

Domain Rules

Wrong Refinement
based on Domain

Rules

Unsatisfied Domain
Rules

If an element is missing, which is supposed to exist in the model, it is considered as an existence
inconsistency. For example, missing a name, a structural section in document or un-modelled part of a
system can be assigned to this group. Similarly, if two elements are supposed to be equal, but they are
not, there is an equivalence inconsistency. However, more complicated types of inconsistencies can be
identified. If an element is refined version of another, but the refinement is done incorrectly, it can be
recognized as a refinement inconsistency. For example, a Simulink model can be refined version of
MATLAB codes. Finally, an inconsistency can arise, when an element is supposed to satisfy another
element's conditions, domain-specific rules or project-specific rules.
Based on the other dimension, inconsistency can violate syntactical or semantical rationale. Notational
instances are a typo or inconsistent use of terms for a same element. Besides, there might exist a set of
conventional rules regarding the syntactic of a model or artefact. Various conventional rules can be set
up including standards, guidelines, and quality attributes of specifications and so on. Accordingly,
inconsistencies can violate conventional rules such as syntax of a modelling language or incompliancy

SYSTEMS ENGINEERING AND DESIGN 2813

with a standard. System/project-specific inconsistencies are the ones that contradict logic and function
of the system or project, which are under development. For example the relationship between
components in the system, the specific defined values and so on. On the other hand, domain-specific
inconsistencies are discipline-specific and root in general knowledge related to a domain, an example
can be violating a physical law.

4. Framework for inconsistency identification in PSS
In this section, we describe a holistic framework that tackles the overall procedure for inconsistency
identification in PSS development. Besides, there are many parameters that determines how an
inconsistency identification procedure will be realised. For example it should be determined to what
extent the process is performed automatically. Therefore, the framework includes such parameters and
we explain them subsequently in the following.

4.1. Process of inconsistency identification in PSS development
To identify inconsistencies during PSS development, the framework considers five high level phases
that need to be carried out. Since many departments and teams are involved in PSS development, it is
necessary to first trace the information flow among them. Based on the information flow, we would be
able to identify related models and artefacts as well as how they are related to each other. Subsequently,
the dependencies among related models are detected in the next phase. At this stage, we have the related
models and the dependencies among them. However, as the models are from heterogeneous domains
and teams, there are expressed in different languages and forms. Therefore, a mutual form is needed to
consolidate the information and enable comparing values. This is done in the fourth phase and finally,
in the last phase, dependent information in the same form can be analysed with regard to some rationale
and the inconsistencies will be exposed.

Figure 1. Inconsistency identification process

The described major phases for PSS inconsistency identification can be implemented by various
methods and tools. For example, in the first and second phase, communication data of stakeholders can
be investigated using information retrieval techniques or manually organizational structure of the project
can be analysed. Reviewing such methods and tools for every phase is out of scope of this study and we
address it in future work. However, the procedure for identifying inconsistencies among related models
(phases 3 to 5) can be detailed more without lacking its general applicability.
To this end, we describe what steps are needed to be taken in every phase. These steps are elaborated
based on three abstraction levels, namely meta-model, model and reality. As depicted in Figure 2, after
identifying a dependency on model level, the exact elements which create the dependency have to be
specified on model level. Afterwards, in order to systematically transform information from dissimilar
models into a mutual form, it is required to trace dependency on the meta-model level. Specifying details
on a meta-model level enables practitioners to generalize dependencies as well as inconsistencies and
repeat the process systematically. In particular, such abstraction levels are essential for automating the
procedure using defined algorithms for machine. After the relationship between two elements are
identified on the meta-model level, the dependent meta-model level elements should be mapped to a
corresponding element on the meta-model level of a mutual form. Consequently, we would be able to

2814 SYSTEMS ENGINEERING AND DESIGN

capture the information in the same format. In the final phase, we need to reason inconsistencies based
on some rationale. However, logics are expressed in a general manner such as domain-specific laws or
system logics. Therefore, the rationale can be formulated on the meta-model level and ground the final
identification as the final step.

Figure 2. Inconsistency identification through abstraction levels

4.2. Parameters of inconsistency identification in PSS development
In addition to the process itself, there are parameters that determine how the process is realised. These
parameters are related to the model and targeted inconsistency as well as the details of identification
method. We distinguish between problem-side and solution-side parameters and explain them in detail.
The problems-side parameters characterize the inconsistency and the situation, in which the consistency
may emerge, while the solution-side parameters represent the techniques and technologies that are used
to identify the inconsistency.
The framework addresses degree of formality, degree of criticalness and inconsistency type as problem-
side parameters. Degree of formality determines to what extent the involved models in an inconsistency
are formal. For example, mathematical equations have high formality, while artefacts written in natural
language, such as user requirements can be considered as the most informal models. The degree of
formality influences on how dependent elements can be identified and transformed into a mutual form.
For example, graph-based formal models such as UML are easier to be mapped into a meta-model and
accordingly transformed into a mutual form. However, informal models require different mechanisms.
In particular, automation of the process in case of formal models is more straightforward than informal
ones. Degree of Criticalness determines to what extent the targeted inconsistency is hazardous to the
system and the project. A high critical inconsistency should not be missed by the implemented
identification methods. Therefore, proper approaches and tools need to be employed in order to reach
high recall for such inconsistences. Furthermore, dissimilar approaches can be employed based on the
inconsistency type as it specifies the relationship between two elements and the rationale behind an
inconsistency.
Similarly, there are three solution-side parameters that address general features of a solution for
inconsistency identification in PSS development. First, considering the parameters of problem-side,
degree of automation, based on which identification process is developed should be decided. How much
automation is required directly impacts on the technologies and tools that are applied. In addition, there
are in general two types of automatically re-employing acquired knowledge, formulating the knowledge
into a set of rules or applying machine learning algorithms to seizure knowledge into a re-applicable
model. These two types of automatic solutions necessitate different mechanisms and infrastructures.
Thus, applicability of both methods should be analysed based on the PSS development settings and
requirements. Finally, appropriateness of different technologies for the mutual form, to which the
information from heterogeneous models are transformed, should be evaluated. Although this parameter
determines how the overall process is realised, the other parameters such as degree of formality and

SYSTEMS ENGINEERING AND DESIGN 2815

degree of automation influence on deciding it. For example, the technology of mutual form needs to be
suited to the involved models as well as the tools and technologies used in automatizing the process.

Table 2. Influencing parameters for inconsistency identification

Problem-side Solution-side

Degree of Formality Degree of Automation

Degree of Criticalness Rule-based vs. Machine Learning

Type of Inconsistency Mutual Form Technology

5. Application: An inconsistency case
We describe application of the framework based on an e-bike-sharing system as an example of PSS.
The e-bike-sharing system, called PSSycle, is developed by a group of students in context of an
interdisciplinary research project that addresses cyclic innovation in PSS development. The large
structure of the research project allows us to apply entire process of the framework and consider the
complete relevant aspects. In the following, we describe the case and an instance of inconsistency,
afterwards we apply the framework on identifying such an inconsistency.

5.1. PSSycle: An E-Bike-Sharing PSS
The research project consists of 7 research departments including Information Systems, Product
Development, Mechatronic Design, Manufacturing Planning, Organizational Psychology, Automatic
Control and Technology in Society. PSSycle development included all departments except Organizational
Psychology, as they were focused on unrelated issues to this case. We briefly introduce the responsibility
of every department in the development process. Department for Technology in Society investigates the
needs for a PSS in society. Information System department tackled software parts of PSSycle as an e-bike-
sharing system, including board computer and mobile app. Departments for Mechatronic Design and
Product Development designed and developed the frame, the lock and the final assembly. The department
for Manufacturing Planning modelled how the PSSycle will be manufactured in a real industrial settings.
Besides, Automatic Control department was responsible for simulation of PSSylce.

Figure 3. Information flow for PSSycle development

In an exemplary scenario, Technology in Society department finds out that there are two types of
PSSycle users. A group of users ride e-bikes for very short trips, while another group, ride e-bikes for
longer trips. However, the current e-bikes cannot ride such long trips completely, supported by the
battery power. Therefore, from a business perspective it is decided that PSSycle should establish new
services for customizing e-bikes for different purposes. As the first step, two types of e-bikes are offered
based on their range: short-range (regular ones) and long-range. To this end, Departments for
Mechatronics Design and Product Development decide to add a new e-bike with the same specifications
as regular ones, but with a higher capacity battery, which has a bigger size than the previously used
battery type for short-range e-bikes. For manufacturing such an e-bike, the gripper used in
manufacturing line must support the size of the batteries. We apply the framework on the described
situation and elaborate how an inconsistency can be identified.
As first step of the framework, we identify the information flow among the teams and departments in
case of the described situation. Depicted in Figure 3, user requirements are formulated by Technology

2816 SYSTEMS ENGINEERING AND DESIGN

in Society department. Afterwards, the user requirements are analysed, designed and translated into
specifications. The e-bike specifications are detailed by departments for Mechatronics Design and
Product Development. Besides, department for Information Systems delivers software specifications.
Subsequently, department for Manufacturing Planning models how the e-bikes should be manufactured
in an industrial settings.

Figure 4. Example of model dependency for PSSycle

Based on the second step of the framework, we identify every department's models related to the battery
manufacturing (we present several models as examples, however a complete model set is out of scope
of this study). User requirements expressed in natural language can be considered as a model developed
by Technology in Society department. UML models are from Information Systems Department.
SysML4Mechatronics (Kernschmidt and Vogel-Heuser, 2013) and CAD models are respectively from
departments for Mechatronics Design and Product Development. Finally, digital factory models are
developed by department for Manufacturing Planning.
In the next step, dependencies among the models need to be identified. Based on the aforementioned
scenario, we demonstrate a dependency between SysML4Mechatronics model of the e-bike battery and
the gripper's model (depicted in Figure 4). Dependent elements are the gripper's supporting width and
the battery's width and length, which it is planned to move.

Figure 5. Meta-model level dependency

After identifying dependencies, the dependent elements should be transformed into a mutual form. This
is an essential step for an automated approach. However, in a manual inspection approach, it depends
on complexity of the dependent models to include or skip the phase because of high simplicity. In case
of PSSycle, dimensions of the e-bike are specified in mechanicalblock of the SysML4Mechatronics
model and the gripper's width is expressed in tool component of a digital factory model. Therefore,
mechanicalblock and tool component are the dependent meta-model elements. We selected RDF for

SYSTEMS ENGINEERING AND DESIGN 2817

mutual form that dependent elements are transformed to. In the following, we show how models are
formulated in RDF.

Figure 6. Transformed models into a mutual form (RDF)

In the final phase, consistency of dependent elements' values are investigated. To this end, we need to
identify rationale that define whether a situation is in the state of consistency or inconsistency. The
rationale capture general laws, logics and considerations, consequently, they can be assigned to meta-
model level. In case of our example, the gripper must be able to pick up and move the battery from its
either length or width dimension. Therefore, width of the gripper have to be equal or greater than the
battery's length and width. This can be expressed on the meta-model level more formally as:

(mechanicalblock:width≤digitalfactorytool:width)AND(mechanicalblock:length≤digitalfactorytool:width)

Based on such a rule on the meta-model level, an inconsistency can be identified between length of the
battery and the gripper's width. The inconsistency on the model level is demonstrated in Figure 7.

Figure 7. PSSycle inconsistency example on model level

6. Discussion
In the previous section, we projected how overall process of the framework can support practitioners to
systematically identify inconsistencies between heterogeneous models of PSS. Besides, we briefly
showed an RDF example of transforming dissimilar models into a mutual form. In this section, based
on the PSSycle case, we explain introduced parameters of the framework. Moreover, we discuss the
limitations of the framework.
The battery was modelled in SysML4Mechatronics, which offers a high degree of formality. Hence, it
allows us to adopt higher degree of automation. The inconsistency between the battery size and the
gripper belongs to satisfaction and system/project-specific types (described in Section 3). In another
words, the exposed inconsistency violated a satisfaction relation defined by the system development's
logics. Regarding degree of criticalness, an inconsistency's criticalness depends on real settings of a
project and the related practitioner's view. Therefore, it cannot be assessed objectively. However, future
work can investigate on the factors that increase criticality of an inconsistency as well as measuring the
criticality based on such factors.
The solution described in the exemplary case can be implemented highly automated. Because the models
are mostly formal and it is elaborated in the previous section that how the dependent elements are related
in the model as well as the meta-model level. Therefore, we consider high degree of automation for the
presented example. Besides, we applied a rule-based method by defining a rule that determines whether
the gripper is compatible with the battery size or not. Finally, as the mutual form technology we used
RDF.
Nevertheless, in the PSSycle case scenario many other types of inconsistency could emerge. For
instance, a conventional inconsistency could arise if width of the gripper was expressed in inches instead
of centimetres. An example of refinement inconsistencies can emerge between RDF presentation of the
battery and its SysML4Mechatronics model, as the RDF is refined version of the SysML4Methcatronics

2818 SYSTEMS ENGINEERING AND DESIGN

model. Therefore, if the battery's width in RDF presentation is different to its value in
SysML4Mechatronics, there is a system/project-specific refinement inconsistency. Besides, more
complicated inconsistencies can happen between requirements collected from users and system
specifications and functionalities. For example, if the battery's discharge rate is faster than the
expectations of the users, this can be considered as an inconsistency.
Although, the inconsistency example of this study is rather simple, however in industrial settings with
high number of interconnected elements, the need for a systematic approach to identify even trivial
inconsistencies is crucial. This study establishes the fundamentals of such an approach that can be
customised based on the needs and situations. For example, to increase dependability, formal methods
can be employed to identify inconsistencies based on the framework. Hence, more in detail methods
and analysis are required to address the introduced phases and parameters of inconsistency identification
for PSS.
Furthermore, we cannot claim that the proposed framework includes all related aspects and parameters,
however the high influential concepts, which are covered by the framework can be extended by future
research through adding new parameters or customising the framework for a particular inconsistency
problem. Moreover, the framework is developed from a PSS development perspective, nevertheless,
future research can investigate and extend its applicability for general inconsistency identification
purposes. Besides, the proposed framework only concentrates on the identification process and how the
exposed inconsistencies should be handled is not tackled, which should be investigated in future
research.

7. Conclusion
PSS development requires collaboration of diverse teams employing varied models and artefacts. Thus,
there is a higher chance for occurrence of inconsistency among the models. Consequently, a systematic
approach is required to support practitioners in order to identify the heterogeneous models'
inconsistences during PSS development. To this end, first we introduced a classification of
inconsistency types, based on which different methods and policies can be employed. Subsequently, we
developed a holistic framework including the general procedure and influencing parameters of
inconsistency identification. The framework can be customised based on different settings and needs.
Based on an e-bike sharing system case, we applied the framework to identify an exemplary
inconsistency. The case demonstrated a concrete problem of the profile fitness among different models,
which is easy if it is designed by the same models and tools. However, it is complicated in the design
phase of PSS, where diverse stakeholders work in parallel and distributed.
The proposed framework of this study addresses the basics of inconsistency identification. Thus, more
studies required to investigate on every introduced aspect of inconsistency identification for PSS. To
this end, we will apply the framework on a more complex PSS scenario to expose applicability of the
framework more in detail. A future work can study what policies are more suited for different types of
inconsistencies. Besides, most of the previous studies applied rule-based methods in order to detect
inconsistencies among models, however, with extensive availability of data, the applicability of
machine-learning techniques on models' inconsistency identification problem should be investigated.
Hence, in future work, we plan to implement such a solution on higher number of models.

Acknowledgement
This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
collaborative research centre ‘Sonderforschungsbereich SFB 768 “Managing cycles in innovation processes –
Integrated development of product-service-systems based on technical products”.

References
Baines, T.S., Lightfoot, H.W., Evans, S., Neely, A., Greenough, R. et al. (2007), “State-of-the-art in product-

service systems.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, Vol. 221 No. 10, pp. 1543-1552. https://doi.org/10.1243/09544054JEM858

Balmelli, L. (2007), “An overview of the systems modeling language for products and systems development”,
Journal of Object Technology, Vol. 6 No. 6, pp. 149-177. https://doi.org/10.5381/jot.2007.6.6.a5

SYSTEMS ENGINEERING AND DESIGN 2819

Dávid, I., Syriani, E., Verbrugge, C., Buchs, D., Blouin, D. et al. (2016), “Towards inconsistency tolerance by
quantification of semantic inconsistencies”, First International Workshop on Collaborative Modelling in MDE
COMMitMDE 2016, Saint Malo, France, 2016, CEUR-WS, pp. 35-44.

Durugbo, C., Tiwari, A. and Alcock, J.R. (2011), “A review of information flow diagrammatic models for product–
service systems”, The International Journal of Advanced Manufacturing Technology, Vol. 52 No. 9, pp. 1193-
1208. https://doi.org/10.1007/s00170-010-2765-5

Feldmann, S., Herzig, S.J.I., Kernschmidt, K., Wolfenstetter, T., Kammerl, D. et al. (2015), “Towards effective
management of inconsistencies in model-based engineering of automated production systems”, IFAC-
PapersOnLine, Vol. 48 No. 3, pp. 916-923. https://doi.org/10.1016/j.ifacol.2015.06.200

Finkelstein, A., Spanoudakis, G. and Till, D. (1996), “Managing interference”, Joint proceedings of the second
international software architecture workshop (ISAW-2) and international workshop on multiple perspectives
in software development (Viewpoints '96) on SIGSOFT '96 workshops, San Francisco, California, United
States, ACM, New York, NY, pp. 172-174. https://doi.org/10.1145/243327.243646

Gausemeier, J., Schäfer, W., Greenyer, J., Kahl, S., Pook, S. and Rieke, J. (2009), “Management of cross-domain
model consistency during the development of advanced mechatronic systems”, Proceedings of the 17th
International Conference on Engineering Design (ICED 09), The Design Society, Glasgow.

Hehenberger, P., Egyed, A. and Zeman, K. (2010), “Consistency Checking of Mechatronic Design Models”,
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference - 2010, Montreal, Quebec, Canada, August 15-18, 2010, ASME, New
York, NY, pp. 1141-1148. https://doi.org/10.1115/DETC2010-28615

Herzig, S.J.I. and Paredis, C.J.J. (2014), “A Conceptual Basis for Inconsistency Management in Model-based
Systems Engineering”, Procedia CIRP, Vol. 21, pp. 52-57. https://doi.org/10.1016/j.procir.2014.03.192

Kernschmidt, K. and Vogel-Heuser B. (2013), “An interdisciplinary SysML based modeling approach for
analyzing change influences in production plants to support the engineering”, 2013 IEEE International
Conference on Automation Science and Engineering (CASE), IEEE, pp. 1113-1118.
https://doi.org/10.1109/CoASE.2013.6654030

Meier, H., Roy, R. and Seliger, G. (2010), “Industrial product-service systems—IPS 2.” CIRP Annals-
Manufacturing Technology, Vol. 59 No. 2, pp. 607-627. https://doi.org/10.1016/j.cirp.2010.05.004

Mont, O.K. (2002). “Clarifying the concept of product–service system.” Journal of Cleaner Production, Vol. 10
No. 3, pp. 237-245. https://doi.org/10.1016/S0959-6526(01)00039-7

Nuseibeh, B., Easterbrook, S. and Russo, A. (2000), “Leveraging inconsistency in software development”,
Computer, Vol. 33 No. 4, pp. 24-29. https://doi.org/10.1109/2.839317

Qamar, A., Paredis, C.J.J., Wikander, J. and During, C. (2012), “Dependency Modeling and Model Management
in Mechatronic Design”, Journal of Computing and Information Science in Engineering, Vol. 12 No. 4, pp.
41009. https://doi.org/10.1115/1.4007986

Shimomura, Y. and Hara, T. (2010). “Method for supporting conflict resolution for efficient PSS development”,
CIRP Annals-Manufacturing Technology, Vol. 59 No. 1, pp. 191-194.
https://doi.org/10.1016/j.cirp.2010.03.122

Song, W. and T. Sakao (2016), “Service conflict identification and resolution for design of product–service
offerings”, Computers & Industrial Engineering, Vol. 98, pp. 91-101.
https://doi.org/10.1016/j.cie.2016.05.019

Spanoudakis, G. and Zisman, A. (2001), “Inconsistency management in software engineering: Survey and open
research issues”, In: Chang S.K. (Ed.), Handbook of software engineering and knowledge engineering, Vol. 1:
Fundamentals, pp. 329-380. https://doi.org/10.1142/9789812389718_0015

Tukker, A. (2004), “Eight types of product–service system: eight ways to sustainability? Experiences from
SusProNet”, Business Strategy and the Environment, Vol. 13 No. 4, pp. 246-260.
https://doi.org/10.1002/bse.414

Vasantha, G.V.A., Roy, R., Lelah, A. and Brissaud, D. (2012), “A review of product–service systems design
methodologies”, Journal of Engineering Design, Vol. 23 No. 9, pp. 635-659.
https://doi.org/10.1080/09544828.2011.639712

Zou, M. and Vogel-Heuser, B. (2017), “Feature-based Systematic Approach Development for Inconsistency
Resolution in Automated Production System Design”, 13th Conference on Automation Science and
Engineering (CASE), Xi'an, 2017, pp. 687-694. https://doi.org/10.1109/COASE.2017.8256183

Mohammadreza Basirati, Msc.
Technical University of Munich, Information Systems
Boltzmannstraße 3, 85748 Garching, Germany
Email: basirati@in.tum.de

2820 SYSTEMS ENGINEERING AND DESIGN

