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Abstract: Every adjustment to a physical product disrupts the manufacturing organization, requiring adaptation in tools 

and processes. The resulting disruption to manufacturing performance is poorly understood. We use design structure 

matrices and a complexity metric to quantify the complexity and change of product architecture in an explorative, small-

scale experiment. Based on the results we develop two propositions to guide further research into the factors that affect 

the shape of consecutive learning curves upon product changes. The first proposition is that after product change, the 

complexity of the novel part of product architecture is responsible for the initial decrease in manufacturing performance. 

Second, we propose that the asymptote of a learning curve and the complexity of a product’s architecture are inversely 

related.  

Keywords: Design structure matrix, DSM, Complexity, Delta, Engineering change, Organizational learning, Learning 

curve, Manufacturing performance  

1 Introduction 

To keep up with market demands, companies continuously improve their products. Every adjustment to a physical product 

however, disrupts the manufacturing organization: Tools and processes have to be updated and possibly redesigned and 

employees need to adapt to the new situation (Gopal et al., 2013). Most companies have difficulty estimating the extent 

of this disruption, but the complexity of a change seems to be an important determining factor (Eckert et al., 2009; Jarratt 

et al., 2011). 

Manufacturing performance has long been known to display learning effects: As an organization gains experience in 

producing a certain product, its performance improves (Wright, 1936; Muth, 1986; Argote and Miron-Spektor, 2011). By 

shaking up the manufacturing process, product changes may impede this ongoing learning process. Improved 

understanding of the impact of product changes on manufacturing performance could form the basis of better production 

planning, improved resource allocation, or market entry decisions.  

In this study, we synthesize existing systems engineering methodologies to quantify product change and complexity in a 

small-scale experiment with individual participants. Based on the results, we develop two propositions for further research 

on the impacts of change complexity on manufacturing performance and offer new tools to model product changes. In 

doing so we continue research into the impacts of technological complexity on performance by McNerney et al. (2011); 

Sinha and De Weck (2012); Sinha et al. (2013); Rosiello and Maleki (2021). We also attempt to alleviate some of the 

difficulty in estimating the organizational impact of product changes described by Eckert et al. (2009) by building upon 

work by Smaling and De Weck (2007). Finally, we answer calls for research into the factors that affect organizational 

learning by Argote (2013) and Lapré and Nembhard (2011). 

2 Background  

Learning curves are an empirical phenomenon where performance increases with experience. The core idea is that with 

each repetition of an activity, learning takes place; knowledge generated is then employed and an increase in performance 

results. This phenomenon is apparent in individuals as well as organizations, with many similarities between the two 

(Thompson, 2012; Lapré and Nembhard, 2011). On an organizational level, different types of learning can occur (Dutton 

and Thomas, 1984; Argote and Miron-Spektor, 2011). For example, through repetition, employees might get better at their 

respective tasks, improvements could be made to the equipment, or organizations can adopt insights gathered by others, 

and invest in improvement programs.  

Cumulative production volume is the most common indicator of organizational experience because it is relatively easy to 

measure and captures the idea of ‘learning by doing’. This measure is typically plotted on the horizontal axis of a learning 

curve graph. Performance is then plotted along the vertical axis and can be measured in many ways (Lapré and Nembhard, 

2011; Argote and Miron-Spektor, 2011). Learning curves are therefore also referred to as ‘performance curves’. Cycle 

time—the time that it takes to produce a single unit—is a common measure for organizational performance. 

While organizational learning curves have often been investigated, the factors that influence their shape are still poorly 

understood. Learning curves vary wildly among organizations, even those manufacturing similar products (Lapré and 
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Nembhard, 2011; Argote and Miron-Spektor, 2011). This has been an obstacle in developing forecasting models and 

applying them in organizational practice.  

Intuitively, product complexity should be an important factor in organizational learning: learning something complex takes 

more time. However, its impact has hardly been researched empirically. The operationalization of a complexity variable 

in operations management research has often been subjective, through surveys (Simonin, 1999; Chapman and Hyland, 

2004; Anzanello and Fogliatto, 2010), or through the judgement of the researchers themselves (Griffin, 1997a,b; Clift and 

Vandenbosch, 1999). Most studies that investigated product complexity specifically did not define it on a level of detail 

that would allow distinguishing two versions of a product. The only exception are the graph-based methods employed by 

Rosiello and Maleki (2021) and McNerney et al. (2011). 

In systems engineering, a product is generally seen as a collection of components that have some type of connection 

(Simon, 1996) and a common purpose. Components are connected via proximity or flow of matter, energy or information 

(Blanchard and Fabrycky, 2011; Walden et al., 2015). Product complexity then arises from the interactions between these  

components (Maier and Rechtin, 2009). It is often described as the difficulty to predict system properties and behaviors 

from analysis of its parts (Anderson and Joglekar, 2012; Suh, 2005). So-called ‘emergent properties’ (Fisher, 2006) cannot 

be inferred by looking at the components in isolation. The interplay of all components together is responsible for a 

product’s desired functionality, but unexpected emergent properties can undermine this intended purpose. 

3. Methodology 

When investigating the impact of product complexity, the operations management literature has used very general 

measures. Comparing two versions of a product, before and after change, requires a more detailed perspective and the 

design structure matrix (DSM) might be an excellent tool to that end, since it allows analysis of a system to an arbitrary 

degree of granularity. A DSM is analogous to a network graph and therefore also a promising method to investigate the 

relationship between product complexity and organizational learning: Learning has successfully been modeled as a 

network search process by Shrager et al. (1988); Fioretti (2007) and McNerney et al. (2011). 

3.1 Capturing Product Architecture and Change 

A design structure matrix (DSM) can be used to display a product as a network of components and interfaces (Eppinger 

and Browning, 2012). Interfaces between components can be mapped in a square matrix, where every row and column 

correspond to a particular system component and every cell corresponds to an interface between the two components 

corresponding to the row-column pair. If there is an interface, or dependency, between two components, the corresponding 

cells in the matrix are marked. This results in a symmetric matrix with marks in the off-diagonal cells, as seen in Figure 

1. 

Figure 1: Example DSM of a bicycle. Purple matrix entries indicate a mechanical, moving interface between components; pink 

indicates a rigid mechanical interface; and orange an electrical interface. Some pairs of components have multiple types of 

dependencies between them. For example, there is a mechanical, moving connection between Front Fork and Frame, but also an 

electrical one: The Front Fork is able to rotate relative to the Frame, to allow steering. Since the Dynamo of the bike in this example is 

mounted on the Front Fork, current from the Dynamo travels via the Front Fork to the frame to reach the Rear Light, resulting in an 

electrical connection between Frame and Front Fork as well. 

To quantify the difference between several alternative changes to a product’s baseline design, Smaling and De Weck 

(2007) coined the idea of the Delta DSM. This Delta DSM captures changes, additions and removals of components and 

interfaces. It is constructed by starting with a DSM of the system before change and subsequently removing the marks 

from all cells. Then, new components are added to the matrix in the form of new rows and columns, resulting in a larger 

square matrix. Whether a component is removed, changed or added is indicated on the diagonal of the Delta DSM. 

Furthermore, every removed, changed and added interface is entered into off-diagonal cells of the matrix. Interfaces that 
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remain unchanged don not appear in the Delta DSM. Figure 2 illustrates the Delta DSM concept by changing the bicycle 

of Figure 1 into an electrical bicycle. In the Delta DSM of Figure 2, we omit components if they remain unchanged and 

all of their interfaces remain unchanged as well. This eliminates empty rows and columns from the Delta DSM. 

 

(a) DSM of an electrical bicycle.    (b) Delta DSM of Figure 1 to 2a. 

Figure 2: Representation of the change from the bicycle in Figure 1 to the electrical bicycle in Figure 2a. Figure 2b shows the Delta 

DSM for this change, with new components and interfaces marked in yellow, removals indicated in grey and changes in green. 

Components such as the Handlebars are omitted from the Delta DSM whenever they remain unchanged and all of their interfaces 

remain unchanged as well. 

3.2 Quantifying Product Complexity  

Based on the mathematical property of matrix energy (Li et al., 2012), Sinha (2014) developed a metric to quantify 

structural complexity of a system captured in an 𝑛 × 𝑛 DSM, which breaks down complexity into three parts:  

𝐶(𝛼, 𝛽, 𝐴) = 𝐶1 + 𝐶2 ⋅ 𝐶3 = ∑𝛼𝑖 +∑∑∑𝛽𝑖,𝑗,𝑘 ⋅
𝐸(𝐴)

𝑛

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

 
  

(1) 

The complexities of individual components, 𝛼𝑖 are summed up to obtain 𝐶1, the ‘component complexity’. 𝛽𝑖,𝑗,𝑘 is the 

complexity of the one-on-one interface of type 𝑘 between components 𝑖 and 𝑗; 𝐶2, the ‘interface complexity’, is obtained 

by summing up these pair-wise interactions. 𝐶3, the ‘architectural complexity’, is the matrix energy of the adjacency 

matrix, denoted 𝐸(𝐴), divided by the number of components 𝑛. The adjacency matrix 𝐴 is equivalent to the system’s DSM 

with ones indicating interfaces and zeros in all other cells, including those on the diagonal. The matrix energy is then 

defined to be the sum of the singular values of 𝐴. 

3.3 Research Design 

Since the impact of product complexity and change on organizational learning curves has hardly been investigated, we 

took an exploratory approach. An experimental study was set up, to allow for easily manipulable levels of complexity, 

change and learning. Since organizations don not lend themselves well to experiments, the study was carried out with 

individual participants. Though not directly generalizable to organizations, individual learning shows many parallels with 

organizational learning (Thompson, 2012; Lapré and Nembhard, 2011) and an experiment with individuals was deemed 

appropriate for an initial exploration of the relationship between product changes and learning. This resulted in a small-

scale, easily reproducible experiment. 

An assembly task was designed to elicit learning curves from individuals: Participants were asked to assemble two variants 

of a ‘product’ made out of Lego bricks, shown in Figures 3 and 4. After assembling one variant five times, participants 

would switch to the other, to mimic an engineering change which would cause a disruption in assembly performance.  

There was no control for participants’ prior experience with Lego, but the machine was intentionally not modeled after 

any existing system to mitigate the influence of any prior engineering knowledge of the participants.  

Half of the subjects built the simpler variant VS first, the other half started with the complex variant VC. The required Lego 

bricks were supplied in a slotted box before every attempt. Participants received pictures of the machine in various stages 

of assembly, with only minimal information about what was shown in every picture. They were intentionally not given 

step-by-step instructions for assembling the machine, rather they were left to figure out efficient assembly procedures 

themselves. 
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DSMs of both product variants are shown in Figures 3a and 4a. Components have an interface in the DSMs when they 

interlock (via studs or an axle), or when they are in physical contact. Assuming all components and interfaces are equally 

complex and assigning a complexity value of 1 to every component and interface, applying the metric by Sinha (2014) 

yields a complexity of 166 for product variant VS and 244 for variant VC. This represents a clear change in complexity 

switching between product variants. Furthermore, the two DSMs allow the derivation of two Delta DSMs representing the 

change from VS  to VC  and vice-versa.          

  

(a)  DSM of 𝑉𝑆.       (b) 𝑉𝑆 fully assembled. 

Figure 3: The simple variant (𝑉𝑆) of the machine that experiment participants assembled. 

 

(a)  DSM of 𝑉𝐶.      (b) 𝑉𝐶 fully assembled. 

Figure 4: The complex variant (𝑉𝐶) of the machine that experiment participants assembled. 
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4. Results 

Eight people assembled both machines, four per experimental group. Two additional participants only constructed one of 

the two variants. Figure 5 shows the results for the 8 participants that constructed both variants. The pattern in Figure 5 of 

two consecutive learning curves, with a decrease in performance between them, corresponds to what is often observed in 

organizational practice. As is evident from Figure 5, there was large variability in performance between participants, likely 

due to their variable previous experience with assembling Lego models. Since the experimental groups were very small, 

this might have influenced the results.  

One would expect mean assembly time for the complex product to be larger on average, regardless of order, than that of 

the simple product. In this small-scale experiment, the difference in assembly time was not significant though. However, 

the jump in cycle time when moving from VS to VC was significantly larger than from VC to VS. Also, practicing with VC 
first significantly lowered the mean assembly time for VS, but not the other way around: The group that made the VS first 

did no better on the VC than the other group, which started with the VC.  

An important qualitative observation was that most participants got the idea of turning over the slotted box with parts to 

speed up the assembly process. They felt that after assembling one machine variant a few times, the time spent on taking 

parts out of the box was limiting their performance. Some attempted to solve this problem by turning over the box and 

emptying it on the table at which they were sat. Most mentioned the idea when assembling VS, only one person mentioned 

flipping the box while assembling VC. 

  

Figure 5: Mean and standard deviation for both groups. Yellow corresponds to the group that built VS first, VC second and blue to the 

other. 

5. The Relationship between Complexity, Change and Learning Curves  

The results of the experiments give some preliminary insight into the effect that a change in product architecture has on 

performance as captured in two consecutive learning curves.  

5.1 Complexity and Performance 

Sinha and de Weck (2016) found that cycle time related supra-linearly to complexity in an experiment where participants 

assembled molecule structures from a chemistry modeling kit: Higher complexity was associated with lower performance. 

In our exploratory experiment, the number of participants was not large enough to statistically validate this relationship 

between product complexity and performance in general. Nonetheless, several features of the observed learning curves 

seem to relate to product complexity in different ways. 
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5.2 Change and the Jump between Learning Curves 

The experiment showed that practicing with the complex VC reduced cycle time for the simple VS significantly, when 

compared to building VS without any previous experience. Interestingly, this effect was not found the other way around: 

Experience with VS did not improve cycle time for VC. An explanation can be sought in the fact that VC was mostly an 

extension of VS, adding components. Moving from VS to VC constituted an introduction of new parts and it took participants 

time to figure out how to assemble them. Going from VC to VS on the other hand, mostly meant a removal of components, 

having little impact on performance. 

The study seems to suggest that the jump between the end-point of a learning curve and the starting point of its successor 

relates to the newness of the system after change. The more complex the part of a product’s architecture that is new to the 

manufacturing party, the more effort required to get the product to perform as intended—decreasing performance. This 

causes a sudden dip in performance from one learning curve to the next.  Complexity in novel architecture might make it 

more likely for unexpected problems to appear. This idea is consistent with systems engineering literature on complexity, 

which suggests that emergent system properties cause issues when complexity rises (Anderson and Joglekar, 2012; Suh, 

2005; Fisher, 2006). We therefore propose: 

P1: Novel product complexity decreases manufacturing performance directly after product introduction, causing a sudden 

dip in performance from one learning curve to the next. 

5.3 Complexity and the Asymptote of a Learning Curve 

Participants mentioned that picking up parts became limiting to their performance after a few builds, especially for the 

simpler VS. Once they had figured out an efficient assembly strategy, which might have been sooner for VS since it was 

simpler, they appeared to run into physical limitations to the assembly process. The impact of novelty on manufacturing 

performance therefore seems to fade away as experience grows. When the emergent issues that arise with a new product 

introduction are dealt with and an assembly strategy has been figured out, performance moves to a lower bound asymptote 

value. This asymptote to performance might again relate to product complexity: Since complexity rises with the number 

of components and interfaces of a system, higher product complexity could mean more manufacturing actions, a larger 

risk of errors, higher costs and a longer cycle time. This is in accordance with the findings of Sinha and de Weck (2016) 

who saw performance decrease with complexity. While assembly time in the experiment did not significantly differ 

between variants when averaged over all attempts of all participants, the final (fifth) attempt to assemble VC took more 

time on average than that of the 𝑉𝑆. This might indicate a higher asymptote to cycle time and hence a lower asymptote to 

performance for the more complex product. In other words: given an equal amount of manufacturing experience, 

performance is worse for a complex product than for a simple product and the maximum attainable performance is lower 

for complex products than for simpler ones. This would also agree with the findings of Sinha and de Weck (2016) who 

saw performance decrease with complexity. We therefore propose: 

P2: Product complexity relates negatively to the lower bound asymptote of the learning curve in manufacturing 

performance. 

6. Quantifying the Complexity of Change 

Figure 6 shows the Delta DSMs of both variants of product change in the experiment. Since the Lego pieces were not 

physically modified, they contain no changed components or interfaces. The only difference between both Delta DSMs is 

that architecture that is new in 7a is removed in 7b and vice-versa. Weighing new and removed components and interfaces 

equally, the complexity of both DSMs is the same following the metric in equation (1). For example, assigning a 

complexity value of 1 to all components and interfaces, the Delta DSMs have a complexity of 186. The experimental 

results in Figure 5 however show a clear difference in performance between both experimental cases, indicating that 

removals impact manufacturing performance differently than additions or changes.    
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(a) 𝑉𝑆 to 𝑉𝐶. 

 

(b) from 𝑉𝐶 to 𝑉𝑆. 

Figure 6: Delta DSMs modeling the change from 𝑉𝑆 to 𝑉𝐶 (a) and vice-versa (b). New components and interfaces are 

shown in yellow and removed architecture in grey. There are no changed components. 

Since new, removed, and common parts of a product’s architecture after change all seem to impact manufacturing 

performance differently, we propose the ‘Complement DSM’, or ‘\-DSM’ to solely capture the unique architecture of 

either of two products that have a degree of commonality between them. This Complement DSM allows separately 

quantifying the complexity of the unique parts of both versions of a product. Similarly, the common part of two products 

can be captured in an ‘Intersection DSM’ or ‘∩-DSM’, including only those components and interfaces which two versions 

of a product share and which do not change. With two Complement DSMs and one Intersection DSMs, the respective 

complexity of old, new and common architecture can be distinguished for any product change. This allows separately 

investigating the influence of the complexity of each of these parts of product on learning curves in manufacturing 

performance. 

Figure 7a shows the Complement DSM for the change from VS to VC in the experiment and Figure 7b shows the opposite 

case. Moving from the simpler 𝑉𝑆 to the more complex 𝑉𝐶 introduced more new components and interfaces than moving 

from 𝑉𝐶 to 𝑉𝑆, as evident from the difference between 7a and 7b. Both contain only new and no changed components and 

interfaces, since no Lego components were physically altered. The Intersection DSM containing common components and 

interfaces between both 𝑉𝑆 and 𝑉𝐶 is shown in Figure 7c.  
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(a) 𝑉𝐶 \ 𝑉𝑆.      (b) 𝑉𝑆 \ 𝑉𝐶. 

 

(c) ∩. 

Figure 7: Complement DSMs showing only new components and interfaces switching from 𝑉𝑆 to 𝑉𝐶 (a) and vice-versa 

(b), and the Intersection DSM showing only components and interfaces common to both architectures (c). 

Discussion & Future Research 

In this paper, we investigate the relationship between learning curves and product changes by quantifying product 

complexity using DSM-based methods. This fits into a broader stream of research to identify the shape parameters of 

organizational learning curves. In particular, we considered product complexity and the overlap between products with 

regards to consecutive learning curves before and after a product change. We found that the complexity metric developed 

by Sinha (2014) is an effective measure to distinguish the complexity of two similar products.  

The study takes an exploratory approach, using a small assembly experiment with individuals, resulting in two promising 

propositions to further investigate in follow-up work. Specifically, we propose that the complexity of the novel part of 

product architecture is responsible for the initial decrease in manufacturing performance after a product change. Second, 

we propose that the asymptote of a learning curve and the complexity of the DSM representing a product’s architecture 

are inversely related: Manufacturing performance is worse for more complex products than for simple products, given an 

equal amount of experience. The framework based on these propositions might help estimate the extent of the disruption 

to manufacturing performance caused by product changes in organizational practice. An increased understanding of the 

impact of product changes might lead to better production planning, improved resource allocation, or market entry 

decisions by organizations. 

While the Lego assembly experiment here was explorative and limited in its number of participants, the resulting patterns 

in performance are also observed in organizational practice. We conclude the findings merit further investigation and 

validation of the proposed ideas. Experiments similar to that of Sinha and De Weck (2016) and the one described here 

provide an excellent method for experimental research. Further research could separately vary the level of overlap and the 

difference of complexity between two product versions. It might also be fruitful to explore the relationship between 

product complexity and the steepness of learning curves, since this is an important characteristic of learning curves that 

we were not able to study.  

Future case studies and natural experiments in organizational settings can help judge the generalizability of experimental 

research findings with individual participants to organizational learning. Research could also expand to include products 

with a large software component, to see whether the link to manufacturing performance is present there as well. Finally, 

while we focused on quantifying product complexity and change, the methods employed here might also enable research 

into the complexity of and change in requirements, processes, or organizations themselves.  
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