Quantifying the Impact of Product Changes on Manufacturing Performance

DS 121: Proceedings of the 24th International DSM Conference (DSM 2022), Eindhoven, The Netherlands, October, 11 - 13, 2022

Year: 2022
Editor: Harold (Mike) Stowe; Tyson R. Browning; Steven D. Eppinger; Jakob Trauer; Pascal Etman, Sjoerd Knippenberg
Author: Dooper, Tjomme (1); Etman, Pascal, L. F. P. (2); Alblas, Alex, A. (2)
Series: DSM
Institution: 1: FruitPunch AI; 2: Eindhoven University of Technology
Page(s): 38-47
DOI number: 10.35199/dsm2022.05


Every adjustment to a physical product disrupts the manufacturing organization, requiring adaptation in tools and processes. The resulting disruption to manufacturing performance is poorly understood. We use design structure matrices and a complexity metric to quantify the complexity and change of product architecture in an explorative, small-scale experiment. Based on the results we develop two propositions to guide further research into the factors that affect the shape of consecutive learning curves upon product changes. The first proposition is that after product change, the complexity of the novel part of product architecture is responsible for the initial decrease in manufacturing performance. Second, we propose that the asymptote of a learning curve and the complexity of a product’s architecture are inversely related.

Keywords: design structure matrix, complexity, engineering change, organizational learning, learning curve


Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.